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1 The Thesis

Generalisation: seems like your probability in a conditional should just be the
corresponding conditional probability.

◦ The Thesis: For all a, c, Pr : Pr(a > c) = Pr(c|a) if Pr(a) > 0 Due to Adams 1975; Stalnaker 1970. Some-
times called ‘Adams’ Thesis’, ‘Stalnaker’s
Thesis’, or ‘The Equation’.– Say that Pr yields the Thesis for a conditional operator > iff Pr and >

satisfy the above equation.

◦ Could be thought of as an extra rational constraint analogous to Normal-
ity and Additivity; though some, particularly “non-factualists", think it is a
constitutive fact, not a normative ideal.

A natural thought is that the Thesis doesn’t just hold as a one-off; it continues
to hold as you learn more information.

◦ Say that the Thesis holds across conditionalisation (wrt Pr and>) iff Pr(·|E)
yields the Thesis wrt >, whenever Pr does. Assuming Pr(·|E) is defined.

◦ This would predict a probability version of Import-Export:

– Pr(A > (B > C)) = Pr((A∧ B) > C)

◦ It also predicts the failures of MP we saw:

– Simply let Pr(Reagan) = 0.7, Pr(Dem) = 0.25 and Pr(Anderson) =

0.05

Dynamic triviality arguments show this natural thought leads to disaster. Another class of triviality results show that
the Thesis has to be restricted, even when
considering a single probability function; it
must be restricted to antecedents that do not
contain conditionals.

2 Triviality 1

(Lewis, 1976)Assumptions:

1. All rational probability functions yield the Thesis.

2. The class of rational probability functions is closed under conditionalisa-
tion: if Pr is rational, then so too is PrE .

◦ i.e. conditionalisation is the right rule for updating our probabilities,
when we get new information.

3. 0 < Pr(c) < 1 and Pr(ac) > 0 and Pr(a¬c) > 0,
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Now we have:

Pr(a > c) = Pr(a > c|c)Pr(c) + Pr(a > c|¬c)Pr(¬c)
by the law of total probability. Pr(b|a) =
Pr(ab)
Pr(a)

Pr(a > c|c) = Prc(a > c) = Prc(c|a) = 1
by The Thesis, where Prc is obtained from Pr
by conditioning on c

Pr(a > c|¬c) = Pr¬c(a > c) = Pr¬c(c|a) = 0
by The Thesis, where Pr¬c is obtained from
Pr by conditioning on ¬c

Pr(a > c) = Pr(a > c|c)︸        ︷︷        ︸
1

Pr(c) + Pr(a > c|¬c)︸          ︷︷          ︸
0

Pr(¬c) = Pr(c)

But it’s implausible that the probability of a conditional equals the probability
of its consequent:

(1) If the car crashes, the airbag will go off.

3 Triviality 2

Assumptions:

◦ All rational probability functions yield the Thesis.

◦ For some rational Pr, 0 < Pr(c) < 1 and Pr(ac) > 0 and Pr(a¬c) > 0,

◦ For that same Pr, Pra∨(¬a∧a>c) is rational.

The argument informally:

◦ Since Pr is rational, Pr(a > c) = Pr(c|a)

◦ Now considerPra∨(¬a∧a>c).

– Pra∨(¬a∧a>c)(c|a) cannot change: it must be Pr(c|a).

– Pra∨(¬a∧a>c)(a > c) must change: since we discard worlds where a > c
is false, but not worlds where it’s true.

◦ So the Thesis does not in fact hold on Pra∨(¬a∧a>c). Contradiction.

The argument formally:

1. Pra∨(¬a∧a>c)(a > c) = Pr(a > c|a)Pr(a|a∨ (¬a∧ a > c)) +

Pr(a > c|¬a∧ a > c)Pr(¬a∧ a > c|a∨ (¬a∧ a > c))

2. Pr(a > c|a) = Pr(a∧a>c)
Pr(a) =

Pr(ac)
Pr(a) = Pr(c|a) by strong centering

Pr(a > c|¬a∧ a > c) = 1, so
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A
A > C

Logical Space

Pra∨(¬a∧a>c)(a > c) = Pr(c|a)Pr(a|a∨ (¬a∧a > c))+Pr(¬a∧a > c|a∨ (¬a∧a > c)) ≥

Pr(c|a)Pr(a|a∨ (¬a∧a > c))+Pr(c|a)Pr(¬a∧a > c|a∨ (¬a∧a > c)) = Pr(c|a).

But Pra∨(¬a∧a>c)(c|a) = Pr(c|a).

So if we start with a Thesis-friendly probability measure, we can easily get to
a Thesis-unfriendly one, just by conditionalizing on a∨ (¬a∧ a > c).

4 Triviality 3

Bradley notes that The Thesis entails

Preservation: Pr(c) = 0∧ Pr(a) > 0→ Pr(a > c) = 0.

Assumptions:

1. Same as before.

2. If A is consistent, then there is some reasonable probability function such
that Pr(A) = 1

Argument:

◦ From 1 we get that Preservation holds for all probability measures.

◦ Then either a or a > c must entail c.

– Otherwise, there will be parts of the state-space where (a > c) ∧ c holds
and likewise parts where ac holds.

– Assign the disjunction of these states probability 1 and we’ll have a coun-
terexample to Preservation.
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5 What to say?

Two options:

1. Reject the claim that rational probability functions are closed under condi-
tionalisation.

◦ Radical — this is a core part of orthodox Bayesianism.

◦ Notice as well we must deny it in some very simple cases: there will be
cases where Pr is rational, but Pr(·|A) is not!

◦ Not immediately obvious how it helps with Preservation argument.

2. Restrict the range of measures which yield the Thesis somehow.

First reason for option 2: Thesis imposes a strong constraint. (Ellis, 1978)

◦ Note that The Thesis holding is equivalent to a conditional being probabilis-
tically independent of its antecedent, given Strong Centering:

Pr(a > c) = Pr(c|a) ≡

Pr(a > c) =
Pr(ac)
Pr(a)

≡

Pr(a > c) =
Pr(a∧ (a > c))

Pr(a)
≡

Pr(a > c) = Pr(a > c|a)

◦ As Stalnaker (1974) pointed out, once we see that, it’s not really clear why
we would expect The Thesis to hold in general, or why we would want it
to. That raises the question: can we construct

cases where the conditional is intuitively not
probabilistically dependent of its antecedent?
Something we’ll return to.

◦ Not clear that this restricts the Thesis enough to avoid the triviality argu-
ments.

A different reason to restrict: context-sensitivity.

◦ We’ve seen abundant reason to think the sentence pa > c q is context sensi-
tive.

– In a context where the relevant information is i it might express the
proposition A >i C; if the relevant information is some other set of
worlds i′ it will express some potentially distinct proposition A >i′ C

◦ Once we make this distinction, we are forced to make some choices.

– Given a particular conditional >i, which rational probability measures
yield the Thesis for >i?



5

– Likewise, given a particular probability measure Pr, which conditionals
>i yield the Thesis for Pr?

A natural idea: the conditional should be coordinated with your evidence:

◦ Let EPr be the strongest proposition such that Pr(E) = 1.

◦ Assume that for each rational probability function, >EPr yields Stalnaker’s
Thesis wrt to Pr. Call this assumption Locality.

– Roughly, coordinate your conditional probabilities with your conditional.

◦ Seems pretty intuitive:

– Suppose EA is Alice’s total evidence and EB is Billy’s.

– Why should Alice have to coordinate her probabilities in A >EB C —
Billy’s conditional — with her conditional probabilities?

6 Back to the Triviality Arguments

Response to Triviality 1:

◦ Assumption 1 fails: there’s no particular conditional which yields Stalnaker’s
Thesis on all reasonable probability functions.

◦ Particular step where the argument fails:

– Suppose Pr satisfies the other assumptions.

· Again, say that EPr is the strongest proposition such that Pr(E) = 1.

– Locality says that Pr(A >E C) = Pr(C|A).

– It does not follow from Locality that PrC(A >E C) = Pr(C|A)

· Instead PrC yields the Thesis for a different conditional, namely A >E∩C

C.

Triviality 1 clearly fails then. The same kind of argument applies to Triviality
4 and arguably to Triviality 3.

7 Tenability in finite cases

Basic idea for the construction: Presentation here is heavily indebted to Justin
Khoo, Paolo Santorio and Simon Goldstein.

◦ We start with a probability function over a state space over worlds.

◦ We extend that probability function to one over a state space of world-
selection function pairs.

◦ Conditional propositions are constructed using the selection functions; in-
tuitively they rule out certain selection functions.
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◦ Probabilities of non-conditional propositions remain the same in the new
state space.

Selection functions and sequences:

◦ Stalnakerian selection functions determine a total order over worlds:

– given a world w for any two distinct worlds, one must be strictly closer
to the w.

◦ This order can be thought of as a sequence 〈w1, w2, ...〉, where w1 is the
closest world to w1, i.e. w1 itself, w2 is the next closest world, w3 is the next
closest world, and so on.

◦ So a pair 〈w, f 〉 can instead be thought of as a sequence beginning with w, Well, this is only really right when the selec-
tion function has special properties. Luckily,
those properties are plausible: it is the same
conditional that we need to validate Flatten-
ing, which we saw on Thursday.

where wi precedes w j in the sequence iff wi <
f
w w j.

Definition of a new state space, given an old finite state space W:

◦ W∗, the set of “worlds", is the set of sequences of worlds in W.

◦ Set of propositions is just the powerset of W∗.

◦ Any old proposition A in the old algebra has a representative in the new
one: the set of sequences starting with a world in A.

– We’ll write this as A∗

◦ The conditional A > C is true at a sequence s iff the first A-world in s is a Note this definition does not allow left or
right-nested conditionals. To generalise we
need a more complicated definition. Where
π is a sequence, say that π[n] is the sequence
that begins with π’s n member

C-world.

New probability function Pr∗ over W∗:

◦ Probability of a sequence is the probability of “drawing” a sequence of
worlds without replacement.

– E.g. Pr(〈w1, w2, w3, w4〉) = Pr(w1)×Pr(w2|¬w1)×Pr(w3|¬(w1∨w2))×

Pr(w4|¬(w1 ∨w2 ∨w3))

◦ Probability of a set of sequences obtained by adding probabilities of the
individual sequences.

More precisely:

◦ Say that [w1, ..., wn] is the set of sequences starting with w1, ..., wn

◦ Recursive definition of Pr∗

– Pr∗([w1]) = Pr(w1)

– Pr∗([w1, ..., wn−1, wn]) = Pr∗([w1, ..., wn−1]) ×
Pr(wn)

Pr(W−w1,...,wn−1)
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Thesis will hold in such models for non-conditional antecedents and conse-
quents. Simple case:

◦ Three worlds: coin Never tossed, coin lands Heads, coin lands Tails.

◦ Pr(N) = 1/2; Pr(H) = 1/4; Pr(T ) = 1/4

8 Tenability with Information-Sensitivity

Two related issues with this simple construction. Issue 1: where’s the information-
sensitivity?

◦ Information-sensitivity was supposed to block triviality.

But no apparent info sensitivity in these models.

Issue 2: updating.

◦ Suppose we conditionalise on H ∨ T . Resulting model no longer validates
the Thesis.

– Intuitively the following claim should get 0:

(2) If the coin didn’t land heads, it wasn’t flipped.

But in fact it gets prob 1/4!

To add information-sensitivity, suppose we have a set of conditional operators,
>A, >B, ... , each indexed to a proposition.

◦ A >E C is true at a sequence s iff the first A ∩ E-world in the sequence is a
C-world.

Now each Pr has a conditional which yields the thesis for some operator:

◦ For non-conditional A and C, Pr∗(A >EPr C) = Pr∗(C|A), when Pr(A) , Recall that EPr is the strongest proposition
such that Pr(E) = 1.0.

9 Generalising Tenability

We’ve ended up, for independent reasons, with a model much like the one that
van Fraassen 1976 developed to give a tenability result for the intra-contextual
version of The Thesis for conditionals with Boolean antecedents. VF’s ap-
proach, roughly was to extend a pmf p from worlds to vectors, roughly as
follows: working with a discrete model for simplicity;

vF’s is continuous.

◦ start with an ur-pmf p; we get the probability associated with a context c of
ϕ by conditioning p on the context set κc.



8

◦ [〈w1, . . .wn〉] is the set of c-admissible vectors which start with the subse-
quence 〈w1, . . .wn〉.

◦ 〈w1, . . .wn, _〉 is the set of worlds that follow the sequence 〈w1, . . .wn〉 in
some contextually admissible vector.

◦ p([〈w, w1, w2, . . .wn〉])= 0 if [〈w, w1, w2, . . .wn〉] = ∅, otherwise:

p([w]) = p(w)

p([w1, . . .wn, wn+1]) = p([w1 . . .wn]) ·
p(wn+1)

p(〈w1, . . .wn, _〉)

vF calls these ‘Stalnaker Bernoulli models’. The intuition is that the probability
that the nth world is w is always p(w)

p(n) , where n is the set of worlds in any nth

position.
The logical motivations for models like this from logic provide motivation

to take them seriously, not just as tenability models.
And the perspective that bounds help us zero in on a model help, in turn,

make sense of some striking failures of The Thesis.
Again, we assume that we default to maximal vector models, where a vector

model for p in context c is maximal just in case, if we add any more vectors to
the model, p will not be satt in c.

10 Failures of The Vanilla Thesis

If we use the vF construction without bounds (or restricted accessibility), we
get the intracontextual, vanilla-antecedent thesis. But there are some striking hence, TVT

generalizations that that misses, which our bound-guided model captures.

10.1 Complex conditionals

The anti-MP, pro-IE intuitions we have looked at also show up in probability
judgments. Recall:

(3) If a Republican wins, then if Reagan doesn’t, Anderson will.

Intuitively, your credence in (3) should be high—around 1. But the probability
of the consequent, conditional on the antecedent, can’t be high, because the
consequent has (per TVT) low probability and the antecedent high.

Instead of going by way of conditional probabilities, your credence intu-
itively goes by the conditional probability of the consequent of the imported
conditional, conditional on its antecedent:

(4) If a Republican wins and Reagan doesn’t, then Anderson will.

So in general, probabilistic modus ponens for complex conditionals seems in-
valid, while probabilistic import-export seems valid:
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10.2 Embedded conditionals

In McGee’s case, (5) seems very probable.

(5) Either Carter will win, or else, if it’s not Reagan, it will be Anderson.

But the probability of Carter is low; and the probability of Anderson, condi-
tional on it not being Reagan, is extremely low. But, by probability theory,
P(a∨ b) ≤ P(a) + P(b). So, per TVT, the probability of (5) should be small!

I think this is an underappreciated fact about McGee’s case: it doesn’t just
show something about how The Thesis interacts with conditionals with com-
plex consequents; it shows something more general about how conditionals,
even simple ones, interact with their local contexts.

10.3 Interlude: How we capture these facts

Well, in the same way as in the logical cases.
If R can access all and only context-set worlds, then unembedded p > q will

have the probability of q conditional on p.
But if we limit the admissible vectors by embedding p > q (and hence

limiting the satt vectors), judgments will change, in line with the above obser-
vations.

10.4 Urn cases

The same is true if we restrict R. We can get counterexamples to TVT even for
unembedded simple conditionals in cases where intuitively we hold fixed more
than just the context. Pollock 1981; McGee 2000; Kaufmann

2004; Rothschild 2013
David is standing in front of two urns of marbles. He will flip a fair coin to
choose an urn. If the coin lands heads, he will choose a marble at random from
Urn 1; if tails, he will choose a marble at random from Urn 2. Each urn contains
ten marbles. In Urn 1, there are eight red and two black marbles; all of them have
a small white spot on them. In Urn 2, there are eight black and two red marbles;
none of those is spotted.

In sum: Urn 1=10 marbles, all spotted, 8 red; Urn 2=10 marbles, no spot-
ted, 2 red. Consider (6):

(6) If David picks a red marble, then it will be spotted.

What credence should you have in (6)?

◦ One answer: for any marble from Urn 1, if it’s red, it’s spotted. For any
marble from Urn 2, if it’s red, it’s not spotted. So (6) is true just in case the
marble is from Urn 1; but your credence in that is .5. call this the non-conforming judgment, and

the next judgment the conforming judgment.
◦ Another natural answer: there are ten red marbles total, which are chosen

with equal probability. Of these, eight are spotted, and two are not spotted.
So your credence in (6) should be .8.
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So it seems like there are two natural perspectives on the credence of (6),
only one of which yields the conditional probability .8. Cases like this are easy to multiply.

10.5 Some replies

A skeptical response: following Kaufmann 2004, you might think this is just
a failure to apply the law of total probability correctly. There are two salient
options, Urn 1 and Urn 2. So people calculate:

P(S |R) =? P(S |R, U1)P(U1) + P(S |R, U2)P(U2) = .5

But this is just a mistake; the correct calculation is instead:

P(S |R) = P(S |R, U1)P(U1|R) + P(S |R, U2)P(U2|R) = .8

But vary the case so that David first flips a coin to decide whether to proceed.
If heads, he simply doesn’t choose at all; otherwise, things proceed as above.
But now there are three salient options: Urn 1, Urn 2, and neither; and now we
cannot proceed by partition: if we simply dropped the undefined term,

we’d get .25, not the intuitive .5. If we renor-
malize we’d get .5—but this is an increas-
ingly baroque error theory.

P(S |R, U1)P(U1)+P(S |R, U2)P(U2)+P(S |R, U1∨U2)︸                ︷︷                ︸
#

P(U1∨U2) =??

So I don’t see a reason to think the non-conforming judgment is a mistake.
You might worry that the non-conforming reading will turn you into a

money-pump. I don’t think so. Consider: Cf. Wójtowicz and Wójtowicz 2021.

Ginger is standing before an urn containing 60 double-heads coins, 20 fair coins,
and 20 double-tailed coins. She will choose a coin without looking, and then look
at it and decide whether to flip it. Ginger is disinclined to flip double-headed
coins: conditional on the coin being double-headed, the chance she’ll flip it is
only 1

3 . But if the coin is fair or double-tailed, she will certainly flip it. What’s
the probability of (7)?

(7) If Ginger flips the coin she chooses, it will land heads.

◦ The conditional probability of the coin landing heads, conditional on being
flipped, is .5.

◦ But another, equally prominent judgment can be brought out as follows. Of
the equiprobable coins that Ginger could select, 60 out of 100 will certainly
land heads, and 20 out of 100 will land heads with probability .5, and 20
certainly won’t land heads. So (7) is certainly true of 60% of the coins, and
has probability .5 of another 20%; and thus has total probability .7.

This case brings out the rationality of the non-conforming judgment, via
betting behavior. Suppose that you are going to take a bet on (7); what odds
are fair? One intuition you can have is that, if the selected coin is never flipped,
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the bet will be called off; if the coin is flipped and lands heads, you win; and if
it’s flipped and lands tails, the bookie wins. Then you should be willing to pay
$.50 for a bet that pays $1 iff (7) is true, since you win the bet in exactly half
the cases where it is not called off.

But if you took a bet on (7), then discovered that the selected coin was
double-headed, you could equally insist you have won the bet—even if the
coin is in fact never flipped. In that case, you can reasonably be certain that (7)
is true. This seems like a rational way to call bets. But if you bet that way, then
you should be willing to pay $.70 for a bet that pays $1 iff (7) is true, since you
will win the bet (on this way of assessing it) in .7 of all possible (equiprobable)
cases.

In general, when R is an equivalence relation, we have Pc(A > C) = Pc(AC)+∑
w∈¬Aκc

Pc(w) · Pc(C|A ∩ R(w)), given maximality. When R is not an equiva-

lence relation, this won’t necessarily hold.

11 Freedom and resentment

This builds on, but I think improves, vF’s approach, in a way that speaks to
some broader points that I think are important:

◦ the failure of TT in the case of complex conditionals is not due to the se-
mantics of conditionals in particular, since we find an exactly parallel phe-
nomenon for disjoined simple conditionals. It is, rather, due to the interac-
tion of conditionals with their local contexts.

◦ in general, local contexts constrain interpretation—in a way that shows up
not just in compatibility and inference judgments, but also in probability
judgments

◦ but that constraint is not deterministic: interpretation is context-sensitive in
ways that show up in the non-conforming judgments. Local contexts bound
interpretation but do not determine it.
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