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1 Bayesianism

Bayesianism is a family of views on which

1. rational agents have degrees of belief (“credences") that conform to
the probability calculus;

2. rational agents update their credences by conditionalizing on what
they learn.

(for 1:) Given a set W of possible worlds which determine a set ℘(W) of
propositions closed under {∧¬}, let a credence function be a function
that

◦ assigns each member A ∈ ℘(W) a real number in [0,1], and is such
that:

◦ if A ⊩ B then Pr(A) ≤ Pr(B);

◦ Pr(A ∨ B) = Pr(A) + Pr(B)− Pr(A ∧ B);

◦ Pr(⊤) = 1 and Pr(⊥) = 0.

These are synchronic features of an agent’s credal state! To obey these is to obey/observe Proba-
bilism.

(for 2:) if Pr is the agent’s credence function at t, and E is the entirety of
evidence acquired between t and t+, then the agent’s credence function
in arbitrary B at t+ should be

Pr+(B) = Pr(B | E) =
Pr(B ∧ E)

Pr(E)
=

Pr(BE)
Pr(E)

Call the norm that tells you to update this way “Conditionalization”. Visualization: cut & renormalize

Obeying Conditionalization is a diachronic feature of an agent’s credal
state!

→ What’s an example of not updating on the entirety of one’s evidence?

– Passport-at-the-bar case.

→ What’s a subtlety of this clause about E being the entirety?

– College-envelopes case: is it E = {waccept, wreject}, or (the stronger)
E = {wreject}?
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2 Setting and Measuring Credence

◦ The standard credence-betting bridge: if B is “ethically neutral” for
you, then you will pay n × $Pr(B) for a bet that pays $n if B and $0

otherwise. Why might B fail to be ethically neutral?
(At least two case-types)

◦ It is standard to assume, ceteris paribus, that you are a representative
member of a (large) population; more generally, it is reasonable to
set credences in line with frequences. ‘Reasonable’, not ‘rational’!

– So, it is reasonable ceteris paribus to set conditional credences in
line with conditional probabilities (“correlations”).

– Addition (controversial!): It is reasonable ceteris paribus to at-
tribute stable correlations to causal relationships (“Reichenbach’s
Principle”). What’s a universe where Reichenbach’s

Principle fails?

3 Decisions

We pair credence with utility in the calculation of expected utility.

(Bike Insurance). You move to a new neighborhood with your bike
(worth e100). Otto the insurance salesman suggests you buy insurance
from him for e40. He points to the high number of bike thefts in the
area.

This is a decision matrix for (Bike Insurance)

no theft theft
no insurance e100 e0

insurance e(100 − 40) e(100 − 40)

Table 1: Matrix for (bike insurance).

with acts A ∈ A along the rows and states S ∈ S along the columns.
We will understand all of these as partitions of propositions. At the
intersection of each act and state, there is a utility value.

A naive equation for expected utility (EU): The norm: choose some A ∈ A that max-
imizes EU(A).

EU(A) = ∑
S

Pr(S)Val(A ∧ S) (1)

So e.g.

EU(no insurance) = Pr(no theft)(e100) + Pr(theft)(e0)
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EU(insurance) = Pr(no theft)(e(100 − 40)) + Pr(theft)(e(100 − 40))

= [1 − Pr(theft)](e60) + Pr(theft)(e60)

= e60

→ Is there a problem with intrinsic enjoyment of costs or fees? Utilities are supposed to measure nonin-
strumental value.

– “At least I have peace of mind!”

→ can you write the standard bet on B for n = e1 as a decision matrix?
B B

accept e(1-Pr(B)) −ePr(B)
¬ accept 0 0

We add:

(Bike Insurance, pt. II). You believe theft (theft) is negatively correlated
with purchasing insurance (insurance).

A second, more sophisticated equation for evidential expected utility
(“EEU”):

EEU(A) = ∑
S

Pr(S | A)Val(A ∧ S) (2)

In the present context:

Pr(theft | insurance) < Pr(theft | no insurance)

◦ Math fact (conglomerability): Pr(theft | insurance) ≤ Pr(theft) ≤
Pr(theft | no insurance)

◦ Another math fact (partition invariance): for any countable set {X1, . . . Xn}
that Pr-partitions W, if X =

⋃
i Xi, then EEU(X) = ∑i Pr(Xi |

X)Val(Xi).

– “Partition invariance makes it possible to employ expected utility maxi-
mization in small-world decision making” (Joyce 1999, pg. 121)

(Bike Insurance, pt. III). Though you believe purchasing insurance (in-
surance) is negatively correlated with theft, you believe this only because
you believe there is a common cause—cautious people are less likely
to expose their bikes to theft.

◦ Screening-off: B screens off C from A iff, even though Pr(C | A) >

Pr(C), PrB(C | A) = PrB(C). Notation: PrB(·) = Pr(· | B)

→ does this entail that ¬B screens of C from A?

Intuition: just be cautious! In this case, cautious ∈ A, so you have con-
trol over it.
But what if the only control you have is correlational?
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4 Newcomb Problems
Quoted from Ahmed (2018).

(Standard Newcomb) You must choose between taking (and keeping
the contents of) (i) an opaque box now facing you or (ii) that same
opaque box and a transparent box next to it containing $1000. Yesterday,
a being with an excellent track record of predicting human behaviour in
this situation made a prediction about your choice. If it predicted that
you would take only the opaque box (‘one-boxing’), it placed $1M in the
opaque box. If it predicted that you would take both (‘two-boxing’), it
put nothing in the opaque box.

4.1 correlation vs. causation: two approaches

Suppose you wish to distinguish the case where A is merely correlated
with (good outcome) S and the case where it is causally related.

1. K-partitions.
Make the columns of decision matrix consist of propositions K over
which you have no causal control; and maximize

CEU(A) = ∑
K

Pr(K)Val(AK) (3)

2. Counterfactuals/Imaging.
The columns S of the decision matrix are anything you like (as be-
fore), but use one of: ‘Pr(A >s S)’ is the probability of ‘if A,

would S’.

CEU(A) = ∑
S

Pr(A >s S)Val(AS) (4)

‘Pr(S || A)’ is the probability of S imaged
on A.

CEU(A) = ∑
K

Pr(S || A)Val(AS) (5)

◦ Lewis (1981) famously claimed all these approaches were equiva-
lent. What’s a way of synthesizing the two ap-

proaches?
◦ of note:

– ‘>s’ is an object-language binary connective, which stands in
need of a semantics.

– ‘||’, like the ‘|’ in ‘Pr(S | A)’, is not an object-language connective
of any kind, any more than ‘∑’ is.

Imaging comes in two flavours: sharp and blurred (or general). Both
require a selection function f , which takes a proposition and world as
arguments.
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When imaging is sharp, f (ϕ, w′) is the unique world w to which w′

wills its mass when Pr is imaged on the proposition X.

Pr(w || X) :=

0 if w ∈ X

Pr(w) + ∑w′∈X|w=σ(w′ ,X) Pr(w′) if w ∈ X
(6)

A common way of understanding the selection function f is that
f (ϕ, w′) is the closest or most similar world to w where X is true.

Similarity, however, admits of ties, as Gardenfors (1982, §1) notes.
He thus defines f (ϕ, w) more generally as a set of worlds Y ⊆ W. The
definition of general imaging additionally has recourse to a transfer
function Tw,ϕ : {v ∈ f (ϕ, w)} → [0, 1]. For example, when Tϕ,u(v) =

.25, then u sends exactly 25% of its probability mass to v when the
probability space is imaged on ϕ. PrX(w) is defined with the aid of
f (·) and T(·), as follows:

PX(w) :=

0 if w ∈ X

P(w) + ∑w′∈X|w∈ f (X,w′) P(w′) · Tw′ ,X(w) if w ∈ X
(7)

For any world w′ and proposition X, we assume at least:

◦ Success: f (X, w′) ⊆ X

◦ Strong Centering: if w′ ∈ X, then f (X, w′) = {w′}

When a world w “dies” under imaging, σ(·) (and T(·)) record how
it bequeaths its probability mass to its survivors. w may dole out
this mass unequally; the only requirement is that “it all goes some-
where”: ∑w′∈ f (X,w) Tw,X(w′) = 1. For this reason, Lewis influentially
described imaging as a process according to which probability “is
moved around” though it is “neither created nor destroyed” (1976,
pg. 310). The presumptive contrast is that when

a world “dies” under conditionalisation,
probability mass is destroyed.

Here is a picture of how imaging is standardly taken to work in
Newcomb’s Problem. The relevant intuition is that even if f (A, w) ̸= w
for A ∈ A, f (A, w) is in the same K-cell as w.

The upshot—the only one that often makes its way into the decision-
theory literature—is that for problems that feature correlation without
causation, Pr(S | A) > Pr(S), but Pr(S || A) = Pr(S). Here, in Newcomb’s Problem:

Pr(million | 1B) > Pr(million), but
Pr(million || 1B) = Pr(million).

References

Ahmed, A. (2018). Introduction. In Ahmed, A., editor, Newcomb’s Problem. Cambridge University Press.
Gardenfors, P. (1982). Imaging and conditionalization. Journal of Philosophy, 79(12):747–760.



6

Joyce, J. (1999). The Foundations of Causal Decision Theory. Cambridge University Press.
Lewis, D. (1976). Probabilities of conditionals and conditional probabilities. The Philosophical Review, 85(3):297–315.
Lewis, D. (1981). Causal decision theory. Australasian Journal of Philosophy, 59(1):5–30.


	Bayesianism
	Setting and Measuring Credence
	Decisions
	Newcomb Problems

