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1 Bayesianism

Bayesianism is a family of views on which

1. rational agents have degrees of belief (“credences") that conform to
the probability calculus;

2. rational agents update their credences by conditionalizing on what
they learn.

(for 1:) Given a set W of possible worlds which determine a set (W) of
propositions closed under {A—}, let a credence function be a function
that

. assigns each member A € (W) a real number in [o0,1], and is such
that:

. if AIF B then Pr(A) < Pr(B);
. Pr(AV B) = Pr(A) + Pr(B) — Pr(AAB);
- Pr(T)=1and Pr(L) =0.

These are synchronic features of an agent’s credal state!

(for 2:) if Pr is the agent’s credence function at ¢, and E is the entirety of
evidence acquired between t and t*, then the agent’s credence function
in arbitrary B at t* should be

Pr(BAE) _ Pr(BE)
Pr(E)  Pr(E)

Call the norm that tells you to update this way “Conditionalization”.

Prt(B) =Pr(B|E) =

Obeying Conditionalization is a diachronic feature of an agent’s credal
state!

— What's an example of not updating on the entirety of one’s evidence?
- Passport-at-the-bar case.
— What's a subtlety of this clause about E being the entirety?

- College-envelopes case: is it E = {waccept, wrejed}, or (the stronger)
E= {wreject}?

To obey these is to obey/observe Proba-
bilism.

Visualization: cut & renormalize



2 Setting and Measuring Credence

- The standard credence-betting bridge: if B is “ethically neutral” for
you, then you will pay n x $Pr(B) for a bet that pays $n if B and $o
otherwise.

- Itis standard to assume, ceteris paribus, that you are a representative
member of a (large) population; more generally, it is reasonable to
set credences in line with frequences.

- So, it is reasonable ceteris paribus to set conditional credences in
line with conditional probabilities (“correlations”).

- Addition (controversial!): It is reasonable ceteris paribus to at-
tribute stable correlations to causal relationships (“Reichenbach’s
Principle”).

3 Decisions

We pair credence with utility in the calculation of expected utility.

(BIKE INSURANCE). You move to a new neighborhood with your bike
(worth €100). Otto the insurance salesman suggests you buy insurance
from him for €40. He points to the high number of bike thefts in the
area.

This is a decision matrix for (B1ke INSURANCE)

no theft theft
no insurance €100 €0
insurance | €(100 — 40) | €(100 — 40)

Table 1: Matrix for (BIKE INSURANCE).
with acts A € A along the rows and states S € S along the columns.
We will understand all of these as partitions of propositions. At the
intersection of each act and state, there is a utility value.
A naive equation for expected utility (EU):

EU(A) =Y Pr(S)Val(ANS) (1)
S

Soe.g.

EU (no insurance) = Pr(no theft)(€100) + Pr(theft)(€0)

Why might B fail to be ethically neutral?
(At least two case-types)

‘Reasonable’, not ‘rational’!

What's a universe where Reichenbach’s
Principle fails?

The norm: choose some A € A that max-
imizes EU(A).



EU((insurance) = Pr(no theft)(€(100 — 40)) + Pr(theft) (€(100 — 40))
= [1 — Pr(theft)](€60) + Pr(theft)(€60)
= €60

— Is there a problem with intrinsic enjoyment of costs or fees? Utilities are supposed to measure nonin-
strumental value.

- “At least I have peace of mind!”

— can you write the standard bet on B for n = €1 as a decision matrix?

accept | €(1-Pr(B)) | —€Pr(B)
- accept 0 o

We add:

(BIKE INSURANCE, PT. II). You believe theft (theft) is negatively correlated
with purchasing insurance (insurance).

A second, more sophisticated equation for evidential expected utility
(“EEU"):

EEU(A) =Y _Pr(S| A)Val(ANS) (2)
S

In the present context:

Pr(theft | insurance) < Pr(theft | no insurance)

- Math fact (conglomerability): Pr(theft | insurance) < Pr(theft) <
Pr(theft | no insurance)

- Another math fact (partition invariance): for any countable set { Xy, ... X, }
that Pr-partitions W, if X = (J; X;, then EEU(X) = Y ; Pr(X; |
X)Val(X;).
— “Partition invariance makes it possible to employ expected utility maxi-
mization in small-world decision making” (Joyce 1999, pg. 121)
Colktom
(BIxe INsURANCE, PT. III). Though you believe purchasing insurance (in-
surance) is negatively correlated with theft, you believe this only because / \

~
you believe there is a common cause—cautious people are less likely Q Q
to expose their bikes to theft. (Yl I O

- Screening-off: B screens off C from A iff, even though Pr(C | A) >
PV(C), PrB(C | A) = PFB(C). Notation: Prg(-) = Pr(- | B)

— does this entail that =B screens of C from A?

Intuition: just be cautious! In this case, cautious € A, so you have con-
trol over it.
But what if the only control you have is correlational?



4 Newcomb Problems

(StaNnDARD NEwCOMB) You must choose between taking (and keeping
the contents of) (i) an opaque box now facing you or (ii) that same
opaque box and a transparent box next to it containing $1000. Yesterday,
a being with an excellent track record of predicting human behaviour in
this situation made a prediction about your choice. If it predicted that
you would take only the opaque box (‘one-boxing’), it placed $1M in the
opaque box. If it predicted that you would take both (‘two-boxing’), it
put nothing in the opaque box.

4.1 correlation vs. causation: two approaches

Suppose you wish to distinguish the case where A is merely correlated

with (good outcome) S and the case where it is causally related.

1. K-partitions.

Make the columns of decision matrix consist of propositions K over
which you have no causal control; and maximize

CEU(A) =} _Pr(K)Val(AK) )
K

. Counterfactuals/Imaging.
The columns S of the decision matrix are anything you like (as be-
fore), but use one of:

CEU(A) =Y Pr(A > S)Val(AS) (4)
S

CEU(A) =) Pr(S|| A)Val(AS) (5)
K

- Lewis (1981) famously claimed all these approaches were equiva-
lent.

. of note:

- ’> is an object-language binary connective, which stands in
need of a semantics.

- ‘|, like the " in “Pr(S | A)’, is not an object-language connective
of any kind, any more than ‘) is.

Imaging comes in two flavours: sharp and blurred (or general). Both

require a selection function f, which takes a proposition and world as
arguments.

Quoted from Ahmed (2018).

‘Pr(A >; S)’ is the probability of ‘if A,
would S

‘Pr(S || A)’ is the probability of S imaged
on A.

What's a way of synthesizing the two ap-
proaches?



When imaging is sharp, f(¢, w’) is the unique world w to which w’
wills its mass when Pr is imaged on the proposition X.
0 ifweX
Pr(w || X) := N (6)
Pr(w) + Zw’ei\w:a(uﬂ,x) Pr(w') ifweX

A common way of understanding the selection function f is that
f(p,w') is the closest or most similar world to w where X is true.

Similarity, however, admits of ties, as Gardenfors (1982, §1) notes.
He thus defines f(¢, w) more generally as a set of worlds Y C W. The
definition of general imaging additionally has recourse to a transfer
function Ty : {v € f(¢,w)} — [0,1]. For example, when Ty, (v) =
.25, then u sends exactly 25% of its probability mass to v when the
probability space is imaged on ¢. PrX(w) is defined with the aid of
f(-) and T(), as follows:

< 0 ifweX
P (w) := , , ?)
P(w) + Loy exjwe fxu) P(@') - T x(w) ifw € X

For any world w’ and proposition X, we assume at least:
. Success: f(X,w') C X
. Strong Centering: if w’ € X, then f(X,w') = {w'}

When a world w “dies” under imaging, o(-) (and T.)) record how
it bequeaths its probability mass to its survivors. w may dole out
this mass unequally; the only requirement is that “it all goes some-
where”: Y e¢(x,w) Tw,x(w') = 1. For this reason, Lewis influentially
described imaging as a process according to which probability “is
moved around” though it is “neither created nor destroyed” (1976,

pg- 310).

Here is a picture of how imaging is standardly taken to work in
Newcomb’s Problem. The relevant intuition is that even if f(A, w) # w
for A € A, f(A,w) is in the same K-cell as w.

The upshot—the only one that often makes its way into the decision-
theory literature—is that for problems that feature correlation without
causation, Pr(S | A) > Pr(S), but Pr(S || A) = Pr(S).
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