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Abstract

In the course of proving a tenability result about the probabilities of
conditionals, van Fraassen (1976) introduced a semantics for condition-
als based on ω-sequences of worlds, which amounts to a particularly
simple special case of ordering semantics for conditionals. On that se-
mantics, ‘If p, then q’ is true at anω-sequence just in case q is true at the
first tail of the sequence where p is true (if such a tail exists). This ap-
proach has become increasingly popular in recent years. However, its
logic has never been explored. We axiomatize the logic of ω-sequence
semantics, showing that it is the result of adding two new axioms to
Stalnaker’s logic C2: one, Flattening, which is prima facie attractive,
and, and a second, Sequentiality, which is complex and difficult to
assess. We also show that when sequence semantics is generalized to
arbitrary (transfinite) ordinal sequences, the result is the logic that adds
only Flattening to C2. We also explore the logics of a few other inter-
esting restrictions of ordinal sequence semantics, and explore whether
sequence semantics is motivated by probabilistic considerations, an-
swering, pace van Fraassen, in the negative.

1 Introduction

Stalnaker’s (1968) ‘A theory of conditionals’ launched the modern study
of the conditional with a simple and compelling semantics for natural-
language conditionals and a description of the corresponding logic C2. In
1970, Stalnaker and Thomason showed how to extend the theory to a lan-
guage with quantifiers, and Stalnaker (1975) showed how to integrate his
theory of the conditional, and the role of mood in interpreting condition-
als, into the theory of communication he was developing. In parallel, Lewis
(1973) developed a book-length defense of a theory of counterfactuals in
a similar spirit, arguing for the philosophical significance of the approach
and its applications. Kratzer (1981) and Kratzer (1986), in turn, developed

*Thanks to Melissa Fusco, Wesley Holliday, Calum McNamara, Nick Ramsey, and espe-
cially Snow Zhang for invaluable and patient help; as well as audiences at UConn, Stanford
and Berkeley.
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her own (logically quite different) variation on these approaches, bringing
this style of analysis into the heart of linguistic theories of conditionals. Ap-
proaches in this spirit remain immensely popular, not only in the parts of
philosophy, linguistics, and logic devoted to the study of conditionals, but
throughout the many areas of philosophy where conditionals play a central
role.

Our concern in this paper is with an intriguing semantic construction
which grew out of a debate about the probabilities of conditionals. On top
of the influential work cited above, Stalnaker (1970) developed a theory of
probability—treated as a property of sentences, and equated with “degree
of rational belief”—for a language with a binary conditional connective >
standing for ‘if. . . then’ (on an indicative interpretation). The theory includes
the following characteristic principle:

Stalnaker’s Thesis: Pr(p > q) = Pr(q | p) (provided the right-hand-
side is defined).1

While some clarification is called for, there is robust empirical motivation
for thinking that there is some important truth in the vicinity of Stalnaker’s
Thesis (see Douven and Verbrugge 2013 and many citations therein). For
instance, if David is holding a fair die, the probability that if he rolls even,
then he’ll roll two is intuitively 1/3—equal to the probability that he rolls a
two, conditional on rolling even.

Lewis (1976) showed that Stalnaker’s Thesis was in tension with the as-
sumption that we update our credences by conditionalization: in particular,
no non-trivial class of probability functions closed under conditionalization
satisfies Stalnaker’s Thesis for a single interpretation of >. This left it open,
however, that the interpretation of the conditional can be coordinated with
the interpretation of ‘probability’—e.g., whether we are talking about cre-
dences before or after some update—so that Stalnaker’s Thesis always holds
within a given context. However, a striking result in Stalnaker 1974 showed
that even this is impossible given the background logic C2, except in certain
trivial cases.

At the same time, van Fraassen (1976) showed how to give models of C2
can be equipped with nontrivial probability functions satisfying a restricted
form of Stalnaker’s Thesis. 2 In van Fraassen’s models, the probability func-
tion on non-conditional sentences can be freely specified, and Stalnaker’s

1See Stalnaker, 1970, p. 75. Like Popper (1959), Stalnaker sets things up in such a way
that the right-hand-side is always defined—e.g., Pr(q | p ∧ ¬p) = 1 for all p and q.

2Publication dates in this literature are confusing. To our knowledge, Lewis’s was the
first triviality result. Stalnaker’s 1974 letter was a response to a draft of van Fraassen’s paper,
which, in turn, was a response (in part) to Lewis’s result. Van Fraassen’s published 1976
paper appears to leave open whether his construction validates Stalnaker’s Thesis for the
whole language, a possibility which Stalnaker’s letter rules out; our understanding is that
van Fraassen’s published paper was in fact the version that Stalnaker’s letter was respond-
ing to, despite the later publication date. Thanks to Bas van Fraassen for correspondence
about this.
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Thesis holds for conditionals whose antecedents do not themselves contain
conditionals.3 And, indeed, this may be enough to account for intuitions
motivating Stalnaker’s Thesis in the first place: intuitions about left-nested
conditionals are generally not very clear, and, where clear, do not obviously
favor Stalnaker’s Thesis (as Kaufmann 2023 has recently argued).

This is not, however, a paper about the probabilities of conditionals (a
topic we return to only briefly, in §13), but rather about the construction
which van Fraassen developed in the course of modeling the restricted
version of Stalnaker’s Thesis. In that construction, van Fraassen used a
semantics for conditionals with the following form. Start with a set W of
“worlds” and a valuation that specifies which atomic sentences are true at
elements of W. Now consider the set ofω-sequences over W: that is, functions
from the natural numbers to W. These sequences will serve as indices in a
model for a language containing the conditional connective>. In this model,
an atom is true at a sequence σ = ⟨w0,w1,w2, . . .⟩ just in case was true at w0

according to the old valuation. We have the standard classical clauses for
negation and conjunction; the interesting move comes in the treatment of
conditionals. A conditional p > q is true at a sequence σ just in case either
σ has a tail at which p is true, and q is true at the first such tail, or σ has
no tail at which p is true. Here, the tails of ⟨w0,w1,w2, . . .⟩ are the sequences
⟨w0,w1,w2, . . .⟩, ⟨w1,w2,w3, . . .⟩, ⟨w2,w3,w4, . . .⟩, . . . .

Sequence semantics has become increasingly popular in recent years.4

But, surprisingly, some basic questions about the semantics have never been
answered, including what its logic is. The goal of this paper is axiomatize the
logic of van Fraassen’s ω-sequence models, as well as some interesting vari-
ants that base the same semantics on different classes of ordinal sequences
(that is, functions from arbitrary ordinals, possibly larger or smaller than ω,
to an underlying set).

We have a few motivations for this project. One is its intrinsic inter-
est: ω-sequence semantics is an interesting, and in some ways very simple,
semantics for conditionals. So we should understand it, and part of under-
standing the semantics is knowing the logic it gives rise to.

Besides being of intrinsic interest, this will help us assess the viability of
sequence semantics for modeling conditionals in natural language, which,
again, has been an increasingly popular approach in recent years.5

A final motivation comes from particularities of the logic that arises from
sequence semantics. As we will show, sequence semantics can be viewed as a
special case of Stalnaker’s semantics for conditionals—a special case which,
it turns out, strictly strengthens Stalnaker’s logic C2. This is of special interest

3It also holds for some conditionals whose antecedents do contain conditionals: see
section 13 for details.

4See e.g. Kaufmann, 2009; Kaufmann, 2015; Bacon, 2015; Schultheis, 2022; Santorio, 2021;
Goldstein and Santorio, 2021; Khoo, 2022.

5See Holliday and Icard 2018 on the methodological importance of axiomatization in
semantics.
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to both authors, who believe that all the principles of C2 are plausible as far
as natural language conditionals go.

This is a controversial position. The commitment of C2 to the validity of
Conditional Excluded Middle (CEM) has historically been rather unpopular,
due to influential criticism by Lewis. In fact, essentially every commitment
of C2 has been rejected somewhere in the subsequent literature. However,
our commitment to the correctness of a logic at least as strong as C2 makes us
particularly interested in strengthenings of C2. (We will not do anything here
to defend C2, but see Dorr and Hawthorne 2022 for extensive discussion.)

To our knowledge, however, no logics which are stronger than C2 but
weaker than Materialism have ever been explored. Materialism is the logic
which collapses the natural language conditional p > q to the material con-
ditional p → q, that is, the logic which simply adds to classical logic the
principle (p > q) ↔ (p → q). There exist powerful arguments against this
equivalence (Edgington, 1995). Famously, however, Dale (1974), Dale (1979),
Gibbard (1981), and McGee (1985) showed that the gap between C2 and Ma-
terialism is surprisingly small: in particular, it is fully closed by the Import-
Export principle (which we discuss in §8). To our knowledge, no logics
residing in the gap bewteen C2 and Materialism have ever been studied,
perhaps because of these famous results. But will turn out that the logic of
ω-sequences is strictly intermediate between C2 and Materialism. In fact,
in the course of exposition, we will explore two such logics: we will show
that the logic of ω-sequences is the logic we call C2.FS, comprising C2 plus
every instance of the following two axiom schemes.

(p > ((p ∧ q) > r))↔ ((p ∧ q) > r)Flattening
((¬p ∨ q) > q) > q→ p ∨ ((p > q) > ¬p)Sequentiality

We will argue, moreover, that Flattening is at least prima facie appealing for
conditionals in natural language, while Sequentiality is, at best, too complex
to assess, suggesting thatω-sequence semantics is not a strong contender for
a logic of the natural language conditional. But, intriguingly, we will show
that the logic of ordinal sequences is the more attractive logic comprising C2
together with just Flattening. Finally we explore the logics of a few other
interesting restrictions of ordinal sequence semantics; and argue that, pace
van Fraassen, sequence semantics cannot be motivated by considerations
about the probabilities of conditionals.

2 The conditional logic C2

Before turning to sequence models and their logic, we will review Stalnaker’s
(1968) conditional logic C2, and a class of models corresponding to that logic.
(Cognoscenti may wish to skip to the next section.)

The language of C2 and all the logics we will be considering is a standard
propositional conditional languageL. Its syntax can be specified as follows,

4



where At = {p0, p1, . . .} is a countably infinite set of atomic sentences:6

p ::= pk ∈ At | ¬p | (p ∧ p) | (p > p)

We use→,↔, and ∨ as abbreviations for the material conditional, material
biconditional, and disjunction defined as usual. We sometimes use pq for
(p∧ q) and p for ¬p. We sometimes omit parentheses: the order of operations
is negation, then the conditional >, then ∧ and ∨, and finally→ and↔, so
for instance p > q→ ¬r > s ∧ t is to be read as (p > q)→ (((¬r) > s) ∧ t).

C2 is the closure of the following set of axiom-schemes:7

Every theorem of classical propositional logicPC
p > pIdentity
(p > q) ∧ (q > p) ∧ (p > r)→ q > rReciprocity
p > q→ (p→ q)MP
p > q ∨ p > ¬qCEM

under the following two inference rules:

⊢ p→ q and ⊢ p together imply ⊢ qDetachment
⊢ (p ∧ q)→ r implies ⊢ ((s > p) ∧ (s > q))→ s > rNormality

When p is a theorem of C2 we write ⊢C2 p. As usual, when Γ ⊆ L, we write
Γ ⊢C2 p to mean that either ⊢C2 p, or there is some non-empty finite subset
∆ ⊆ Γ such that a material conditional whose antecedent is the conjunction
of all the elements of ∆ and whose consequent is p is derivable in C2.

Stalnaker’s own axiomatization of C2 is somewhat different, and uses
two further abbreviations: □, defined by □p := ¬p > p, and ♢, defined
by ♢p := ¬□¬p.8 Stalnaker then defines C2 with the axioms PC, MP, and
Reciprocity and the rule of Detachment as above, plus four further axioms
and one further rule:

□(p→ q)→ (□p→ □q)K
□(p→ q)→ p > q
♢p→ (p > q→ ¬(p > ¬q))
p > (q ∨ r)→ (p > q ∨ p > r)
⊢ p implies ⊢ □pNecessitation

It is a good exercise to show that these two axiomatizations of C2 are indeed
equivalent. Deriving our axiomatization from Stalnaker’s is easy, using the

6Stalnaker and Thomason (1970) extend C2 to a language with quantifiers, but here we
are concerned only with the propositional fragment from Stalnaker 1968.

7Reciprocity is often called CSO, but the source of that name is lost (to us, at least), so
we will use the more mnemonic name.

8♢p could equivalently be defined as ¬(p > ¬p).

5



definition of □ via >. For the other direction, the key principle to derive is:

Mod □p→ q > p

Stalnaker’s axiomatization brings out the fact that C2 in fact contains a
standard modal logic. The modal logic KT is the logic containing every
instance of the PC and K schemas as above, along with the further axiom
scheme:

T □p→ p

closed under the rules of Necessitation and Detachment. We will show below
that the theorems of C2 expressible using atoms, Boolean connectives, and
□ (that is, the theorems in the modal fragment of L) are exactly the theorems
of KT.

While □ in the formal language is simply a shorthand, one might also
think there are indeed close connections between necessity and condition-
als, in particular between, on the one hand, epistemic modals and indicative
conditionals; and, on the other, circumstantial modals and subjunctive con-
ditionals, respectively.9 Such connections would make the modal logics of
various conditional logics especially interesting.

3 Order models for C2

There are many model-theoretic semantics for conditional connectives in the
literature, generalizing Kripke’s possible-worlds semantics for modal logic
to conditional languages. Our focus in this paper will be on order models for
conditionals, which were introduced by Lewis (1973) as models for his logic
(which is strictly weaker than C2). Order models turn out to be particularly
intuitive for the study of C2 and its strengthenings. In particular, when
modeling C2 with order models, we can use order models where each world
is associate with a well-ordering of worlds, making the semantics particularly
easy to state. Moreover, as we will see, van Fraassen’s ω-sequence models
can be very naturally viewed as a further special case of order models,
making it easy to see that their logic includes C2.

A Kripke model equips a set of possible worlds with a binary accessibility
relation R, representing relative necessity and possibility: p is necessary at
w just in case p is true throughout the worlds accessible from w, which we
write R(w), and p is possible at w just in case p is true somewhere in R(w).
An order model is like a Kripke model but with additional structure: in
addition to a set of worlds R(w), an order model associates each world w
with an ordering <w of R(w). We pronounce u <w v as ‘u is closer to w than v’.
In such a model, assuming there are some closest p-worlds to w, p > q is true

9See Dorr and Hawthorne 2022 for one defense of such a position.
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at w just in case all of these worlds are q-worlds. p > q is also (‘vacuously’)
true at w when there aren’t any p-worlds in R(w).10

Lewis conceived of closeness in terms of similarity: x <w y means that
x is more similar to w than y is (in whatever respects turn out to be rel-
evant). But using order models does not commit us to a similarity-based
interpretation of the order functions, any more than Kripke semantics for
the modal operators commits us to any particular theory of necessity and
possibility. Thus, skeptics of similarity-based approaches to conditionals (a
group in which we include ourselves) have no special reason to object to
the use of order models. Indeed, in modelling strengthenings of C2, we will
need to impose conditions on order models which would be completely
implausible if closeness had to be interpreted as similarity, so insofar as the
strengthenings are well-motivated, they will add to the already strong case
against similarity-based approaches (see §8).

The order models characteristic of C2 are of a particularly constrained
kind, where each ordering <w is a well-order: that is, a transitive, connected,
asymmetric, well-founded relation on R(w). This means that we can restate
the order semantics for conditionals in terms of the unique closest antecedent
world, if there is one: p > q is true at w just in case q is true at the first p-
world in <w, or there are no p-worlds in R(w). This uniqueness assumption
guarantees that the controversial CEM axiom holds in the model; logics
without CEM can be obtained by relaxing this assumption. However, we
will not have occasion to consider such models in this paper, so by ‘order-
model’ we will always mean a well-order model. 11

Let us lay this all out more succinctly, and introduce some standard
terminology which will be helpful for us:

10In the general order-models considered by Lewis, we also need to say something about
the case where R(w) contains some p-worlds, but for each one of them, there is another that
is closer. However this case will conveniently not arise in the models we deal with.

11Order semantics for conditionals is equivalent to a semantics based on selection functions.
A selection function is a function f which takes a world w and a set of worlds φ and returns
a set f (w, φ). We can use a selection function to evaluate conditionals, by defining Jp > qK
to be {w : f (JpK,w) ⊆ JqK}. In the case of interest for C2, f is required to obey constraints
corresponding to Identity, Reciprocity, MP, and CEM:

1. If w ∈ φ, w ∈ f (φ,w)

2. If f (φ,w) ⊆ ψ and f (ψ,w) ⊆ φ, f (φ,w) = f (ψ,w).

3. f (φ,w) ⊆ φ

4. f (φ,w) has cardinality at most 1

We can move freely between selection functions obeying these constraints and order func-
tions. Given a selection function f , we define an order function < by saying that x <w y
just in case f ({x, y},w) = {x} and f ({y},w) = {y}. Conversely, given an order function <, we
define a selection function f by saying that f (φ,w) is the singleton of the first φ-world in
<w, if there is one, and otherwise the empty set. So there is no deep difference between these
two kinds of model. However, order models lend themselves more naturally to the study
of sequence semantics, as we shall see.
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Definition 3.1. An order frame is a pair ⟨W, <⟩, where W is a nonempty set
and < is a function which takes any w ∈ W to a strict total well-order <w on
some subset of W such that whenever x <w y, w = x or w <w x.

We can read off the accessibility relation from an order frame: the worlds
accessible from w are those that w strictly precedes in the ordering induced
at w, together with w itself. In other words, R(w) = {w}∪{v : w <w v}.12 As we
will see, R plays the same role with respect to the defined □ as accessibility
relations usually do in Kripke models. We write x ≤w y whenever x, y ∈ R(w)
and y ≮w x, i.e., whenever either x <w y, or x = y and x ∈ R(w).

Definition 3.2. An order model is an order frame ⟨W, <⟩ together with a
valuation function V : At→ P(W).

Definition 3.3. When ⟨W, <,V⟩ is an order model, its denotation function is
the function J·K⟨W,<,V⟩ : L → P(W) such that for any atom pk and sentences
p, q:

JpkK = V(pk)
J¬pK =W \ JpK

Jp ∧ qK = JpK ∩ JqK
Jp > qK = {w ∈W : R(w) ∩ JpK = ∅ ∨ ∃y ∈ R(w) ∩ Jp ∧ qK : ∀x <w y : x < JpK}

For readability, relativization of J·K· to a model is usually left implicit. As
usual, we can define a pointed order model as a pair of an order model with
a world from its set of worlds, i.e. a pair ⟨w, ⟨W, <,V⟩⟩ such that w ∈ W and
⟨W, <,V⟩ is an order model; when ⟨w, ⟨W, <,V⟩⟩ is a pointed order model, we
say that it is based on ⟨W, <,V⟩. p is true at a pointed order model ⟨w,M⟩ just
in case w ∈ JpKM. When Γ ⊆ L, we can also speak of Γ being true at a pointed
model to mean that all its elements are. We also write w,M ⊩ p when p is
true ⟨w,M⟩; when M is implicit from the context, we write simply w ⊩ p.
For brevity we sometimes talk about p being true at every model in a given
class; by this we mean true at every pointed model based on a model in that
class. Two pointed models are equivalent just in case they verify exactly the
same sentences of L.

A standard induction on formulae shows:

Theorem 3.4. C2 is sound for order models: that is, ⊢C2 p implies that p is
true in every pointed order model.

We also have a corresponding completeness result: every sentence that is true
in every pointed order model is a theorem of C2. Equivalently, whenever
p is consistent in C2 (that is, p ⊬C2 ⊥, where ⊥ := p0 ∧ ¬p0) it is true in
some pointed order model. In fact, we can show something stronger: C2 is
complete with respect to the class of finite order models:

12Accessibility relations are sometimes specified as independent parameters, but they
needn’t be.
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Theorem 3.5. If p is true in every finite pointed order model, then ⊢C2 p.

The proof of this result, together with all the other completeness theorems
we will claim in this paper, is given in the Appendix.

One corollary is that C2 is decidable. Since every non-theorem is false
in some finite pointed order model, and we can effectively enumerate all
the finite pointed order models (up to isomorphism), we can test for non-
theoremhood by searching through the finite pointed order models until we
find a countermodels; this provides an effective decision-procedure when
run in parallel with a proof search.

This soundness and completeness theorem also allows us to confirm our
earlier assertion about the modal fragment of C2:

Theorem 3.6. When p is a sentence in the modal fragment of L, ⊢C2 p iff
⊢KT p.

Proof. We rely on the well-known fact that KT is sound and complete with
respect to modal modals with a reflexive accessibility relation.

⇒ Normality for > gives the K axiom for □, and MP for > gives T for □.

⇐ Suppose we have a modal model W with a reflexive accessibility rela-
tion R; we can extend this to an order model that respects R by fixing
a strict well-ordering < on W, and for x , y, let x <w y iff wRx and
wRy and either x = w, or x , w and y , w and x < y. If ⊢C2 p then by
soundness p is true in every order model, and hence in every reflexive
modal model, and so by completeness of KT ⊢KT p.

□

4 A note on strong completeness

Theorem 3.5 is about individual sentences: it is equivalent to the claim that
whenever p is consistent in C2 (meaning that ¬p is not a theorem of C2), it
is true in some pointed order-model. This kind of result is sometimes called
a weak completeness theorem. By contrast, a strong completeness theorem
would say that for every set of sentences that is consistent in a certain
logic, there is a model based on a frame in the relevant class in which every
sentence in that set is true. Somewhat surprisingly, it turns out that when we
define consistency in C2 for sets of sentences in the obvious way—Γ is C2-
consistent iff there do not exist p1, . . . , pn in Γ such that ⊢C2 ¬(p1∧· · ·∧pn)—we
do not have a strong completeness theorem analogous to Theorem 3.5.13 The
problem, of course, arises with certain infinite sets of sentences:

Theorem 4.1. There are C2-consistent setsΓ ⊆ L such that there is no pointed
order model in which every member of Γ is true.

13We do not know of any explicit discussion of this point in the literature. But see
Kaufmann 2017 for related points.
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Proof. One such Γ is the following:

Γ = {¬((pi ∨ pi+1) > pi) | i ∈N}

Suppose all the members of Γ were true in some pointed order model
⟨w, ⟨W, <,V⟩⟩. Consider the set of worlds ϕ which verify any atom, i.e.,
ϕ =

⋃
i V(pi). We must have ϕ ∩ R(w) , ∅, for otherwise the elements of

Γ would all be false at w (e.g., if p1 and p2 are nowhere true in R(w), then
(p1 ∨ p2) > p1 is vacuously true at w). Since <w is a well-order, ϕ must have
a least element x in <w. Some atom pk is true at x, by definition of ϕ. Now
consider (pk ∨ pk+1) > pk. This is true at w, since the first world in <w where
pk ∨ pk+1 is true must be x (since x is the first world in <w where any atom
is true), where pk is true. Hence its negation is false at w, contrary to the
assumption that w verifies all the elements of Γ.

Nevertheless, Γ is consistent in C2. If it were not, then by definition, it
would have some inconsistent finite subset. But for every finite subset of Γ,
we can find a pointed order model at which all elements of that subset are
true, which with soundness shows that every finite subset of Γ, and hence
Γ itself, is consistent. For given a finite ∆ ⊂ Γ, let pk be the atom which
appears in ∆ whose index is the highest. Consider any set W with k + 1
members, which we label w0,w1, . . .wk. ∆ is true at the pointed order model
⟨wk, ⟨W, <,V⟩⟩, where < is any order function such that wk <wk wk−1 <wk

wk−2 <wk · · · <wk w0, and V a valuation such that V(pi) = {wi} for i ≤ k. □

The same reasoning shows that no extension of C2 in which Γ remains
consistent can be strongly complete for any class of order models.

It is possible, however, to formulate a notion of a “general” order frame,
and hence order model, relative to which we do have strong completeness
(cf. Segerberg 1989). The idea is to add to our frames an extra “proposi-
tional domain” parameter—a set of subsets of domain, representing the
allowable denotations for sentences—and then require that our orders are
well-founded only relative to the elements of that parameter.

In more detail, let a generalized order frame be a triple ⟨W,B, <⟩, where
W is any non-empty set; B is a set of subsets of W, closed under the set-
theoretic operations corresponding to ∧,¬, and > in order semantics; and <
is a function which takes any w ∈ W to a total linear order <w on a subset
of W, such that whenever φ ∈ B and φ ∩ R(w) , ∅, φ has a unique first
element in <w (that is, <w is well-founded modulo B). A generalized order
model is a generalized order frame ⟨W,B, <⟩ equipped with a valuation
V : At → B. The definition of J·K that worked for order models still works
in generalized models, and yields a function from L to B. C2 is sound and
strongly complete with respect to generalized order models; completeness
can be shown with an standard canonical model construction. To model a
set of sentences like Γwhich is not true in any order model, we can define a
generalized order model in which the set ϕ of worlds that verify some atom
is not in the propositional domain, and does not have a minimal element in
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<w. A generalized order frame is full if B = ℘(W); full generalized frames
are equivalent to order frames.14

Presumably because of facts along these lines, Segerberg (1989) writes
that ‘in modal logic it seems quite natural to restrict one’s interest—at least
initially—to full frames. In conditional logic, studied in the present vein, this
is not so.’ Nevertheless, our interest in this paper will be primarily in full
order frames, since our main goal is to identify the logics of various kinds
of sequence models, which (as we will shortly see) can be viewed as special
cases of full order models.

5 ω-sequence semantics

With this set-up in hand, we are now in a position to give a more rigorous
presentation of van Fraassen’s (1976) ω-sequence models. We will present
these models in a way which brings out the fact that these are in fact a
special case of order models. This will let us show immediately that the
logic of ω-sequences is at least as strong as C2.

First, we will need some general terminology for talking about sequences.
Although for van Fraassen’s models the sequences of interest areω-sequences,
which can be understood as functions from the natural numbers, for the sake
of later generalizations we will consider these as a special case of “ordinal
sequences”, whose domain can be any arbitrary ordinal.

Definition 5.1. Given a non-empty set P and an ordinal α, an α-sequence over
P is a total function σ : α→ P. A function is an ordinal sequence just in case it
is an α-sequence for some ordinal α.

When σ is an α-sequence and β < α, we write σβ for the value of σ at β,
that is, σ(β). We write σ[β:] for the βth tail of σ, i.e., the α − β sequence such
that σ[β:](γ) = σ(β + γ) when β + γ < α, and undefined otherwise.

When τ is a tail of σ, the rank of τ in σ is the least β such that τ is the βth
tail of σ.

Any set of ordinal sequences can be endowed with an order function in a

14The selection function models described in footnote 11 can be “generalized” in an
analogous way to order models. In a generalized order model, the selection function f is
only defined for on pairs w, φ where φ belongs to the propositional domain; as with order
models, we also require the propositional domain to be closed under all the operations on
sets corresponding to the semantic clauses.

In both generalized order models and generalized selection models, elements of the
propositional domain that happen not to be denoted by any sentence in L are logically
irrelevant: restricting the propositional domain of a model to the sets that are in fact denoted
by sentences of L (in the original model) will not change the truth value of any sentence at
any world. This is worth noting because it brings us back to the kind of models developed in
Stalnaker 1968; Stalnaker and Thomason 1970 in which the selection functions are defined
not on pairs of worlds and sets of worlds, but for pairs of worlds and sentences. Given
the constraints Stalnaker and Thomason place on such selection functions, such models are
equivalent to generalized order models as we have defined them here.
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natural way provided that it is closed under tailhood (that is, if it contains σ
then it contains σ[β:] when the latter is defined):

Definition 5.2. The tail order function <S on a set of sequences S has τ <S
σ ρ

iff τ and ρ are tails of σ and the rank of τ in σ is less than the rank of ρ in σ.

Definition 5.3. An order frame ⟨W, <⟩ is anω-sequence frame iffW is a set ofω-
sequences on some underlying set P (which we call the “protoworlds”); W is
closed under tailhood; and< is the tail order function<W as in Definition 5.2.
A [pointed] ω-sequence model is a [pointed] order model based on an ω-
sequence frame.

For brevity, we write ⟨σ,W,V⟩ for the pointedω-sequence model ⟨σ, ⟨W, <W,V⟩⟩.
For even more brevity we sometimes will simply specify a sequence and a
valuation ⟨σ,V⟩; in that case, W is (implicitly) the set of all and only σ’s tails.

Van Fraassen’s models can be characterised as a special case of ω-
sequence models, namely those that are full and categorical:

Definition 5.4. An ω-sequence frame ⟨W, <⟩ is full when W is the set of all
and only ω-sequences over some P.

Definition 5.5. An ω-sequence frame ⟨W, <⟩ is categorical iff V(pk) for each
atom pk is a categorical set of sequences: one that includes both or neither of
any two sequences with the same first element

It should be clear how this semantics is equivalent to the (more standard)
presentation of van Fraassen’s models we gave in the introduction: on this
semantics, p > q is true at a sequence σ just in case σ has a tail at which p
is true and q is true at the first such tail, or else σ doesn’t have any tails at
which p is true.

Van Fraassen called the members of the underlying set P ‘worlds’. We
call them ‘protoworlds’ to avoid confusion—after all it is not elements of
P, but sequences over P, that play the standard model-theoretic role of
worlds in assigning truth values to sentences. Obviously, we are free to call
them whatever we like. The choice to call them “worlds” might go along
with a metaphysically ambitious take on the significance of the models,
on which the contrast between subsets of W that do not divide sequences
with the same first element and the rest is taken to model a non-model-
relative contrast between “factual”/“objective”/“heavyweight” questions on
the one hand and “non-factual”/“subjective”/“lightweight” questions on the
other. The former questions are supposed settled by how things are out there,
whereas the latter are in some sense mere expressions of the way we think,
or artifacts of the way we talk. A proponent of this metaphysical distinction
might think of “worlds” as things that merely answer all factual questions;
in that case, ‘world’ will seem a good name for elements of P, since a single
element of P is enough to determine a truth value for any sentences with
categorical denotations. But we will set aside these questions of metaphysical
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interpretation here, since they are irrelevant to our logical concerns: even
if one regards the contrast between the factual and the non-factual as a
chimera, one might see good reasons for accepting the logic of sequence
models.

6 Some variations on ω-sequence models

In the previous section we introduced both ω-sequence models and the
more specific class of full, categorical models. Prima facie, since not every
ω-sequence model is a full and categorical model, one might expect that
some sentences that hold in all full and categorical models do not hold in all
ω-sequence models. But it turns out that this is not the case: the restriction
to full and categorical models makes no difference to the logic. To see why
this is the case, the following fact will be useful:

Fact 6.1. Pointed ω-sequence models ⟨σ,W,V⟩ and ⟨τ,W′,V′⟩ are modally
equivalent whenever σ[ j:]

∈ V(pk) iff τ[ j:]
∈ V′(pk) for all j, k ∈N.

The proof is a routine induction on the length of formulae. The intuition is
that all that matters in assessing the truth of a sentence at the distinguished
sequence in a pointed ω-sequence model is how the tails of that sequence
are valued; just as the actual identity of worlds doesn’t matter in Kripke se-
mantics, likewise the actual identity of sequences doesn’t matter in sequence
semantics.

As an immediate consequence of Fact 6.1, we have:

Fact 6.2. Any pointed ω-sequence model M = ⟨σ,W,V⟩ is modally equiv-
alent to the pointed ω-sequence model MN = ⟨idω,V′⟩ where idω is the
sequence ⟨0, 1, 2, 3 . . .⟩ of the natural numbers in their standard order, and
id[ j:]
ω ∈ V′(pk) iff σ[ j:]

∈ V(pk) for all natural numbers j, k.

We can think ofMN as a kind of minimal representation ofM.
From Fact 6.2 a number of interesting invariance facts immediately fol-

low. First, we can extend any pointed ω-sequence model to a full pointed
ω-sequence model in which W includes all ω-sequences over P, extending
the valuation to the new sequences however we please, without making any
difference to what’s true in the model. The logic of full ω-sequence frames
is thus the same as the logic of all ω-sequence frames. From the other end,
we can prune any pointed ω-sequence frame back to the generated frame
in which W is just the set of all tails of the designated sequence without
making a difference to what’s true in the model. Thus the logic of generated
ω-sequence frames is also the same as the logic of all ω-sequence frames.

We can also use Fact 6.2 to show that requiring categoricity makes no
difference to the logic. For however a pointed ω-sequence model M may
violate this requirement, the categoricity requirement is automatically sat-
isfied in that model’s “minimal representation”MN , since inMN , W is the
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set {⟨0, 1, 2, . . .⟩, ⟨1, 2, 3, . . .⟩, ⟨2, 3, 4, . . .⟩, . . .}, no two of whose members have
the same first element. It follows that the logic of categorical ω-sequence
models is the same as the logic of all ω-sequence models, and that the logic
of full categorical models is the same as the logic of full models, and hence
also the same as the logic of all ω-sequence models.

We can also use Fact 6.2 to identify some further conditions which we
could, if we wished, impose onω-sequence models without making a differ-
ence to the logic. In our models, we allow the domain to include eventually
cyclic sequences some of whose tails are identical: for instance, ⟨1, 2, 1, 2, . . .⟩
is the first, third, fifth, . . . tail of ⟨3, 1, 2, 1, 2, . . .⟩.15 However, it would not mat-
ter if we ruled out eventually cyclic sequences, since none of the sequences
in the minimal representation are eventually repeating.16 Indeed, for exactly
the same reason, it would make no difference if we ruled out all repetition
of protoworlds within a sequence, so that (e.g.) we cannot have a sequence
beginning ⟨1, 2, 1, . . .⟩.

With all this in hand, it is worth noting from the opposite direction that
some approaches which bear a close resemblance to ω-sequence semantics
have logics that are very different from the logics we consider, and indeed
are orthogonal to C2, rather than strengthening C2. Two noteworthy recent
examples are the approach of Bacon 2015, who develops a version of se-
quence semantics which gives up Reciprocity; and Goldstein and Santorio
(2021), who marry finite sequence semantics with the domain semantics
from Yalcin (2007), resulting in an interesting extension of Yalcin’s logic,
which invalidates Strong Centering. We will set aside these approaches, as
well as other variants whose logic is orthogonal to C2, focusing instead on
semantics corresponding to logics that extend C2.

7 Flattening

We turn now to our main question: what is the logic of ω-sequence models?
Since we were able to present ω-sequence models as a special case of

order models, it is immediate from the soundness of C2 with respect to
order models that the logic ofω-sequence models includes C2. But it includes
more as well. For an especially obvious example of how it goes beyond C2,
consider the following modal schema:

4 □p→ □□p

As is well known, 4 is valid on a modal frame just in case its accessibility
relation is transitive. It is consequently valid on ω-sequence frames: τ is
accessible from σ just in case τ is a tail of σ, and any tail of a tail of σ is a tail

15An sequence σ is eventually cyclic iff for some n and m, for all j, k, σ(n+ jm+k) = σ(n+k).
16It turns out that we also get the same logic if we require the sequences to be eventually

cyclic. This follows from our completeness theorem for C2.FS, which works by generating
models all of whose sequences are eventually cyclic.
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of σ. But 4 is not part of C2, whose modal logic, again, is KT, which does
not include 4; equivalently, order frames in general need not have transitive
accessibility.

Another modal schema that is not part of C2 (or of the result of adding
4 to C2) is

H (♢p ∧ ♢q)→ (♢(p ∧ ♢q) ∨ ♢(q ∧ ♢p))

H is valid on a modal frame just in case its accessibility relation is connected:
whenever wRv and wRu, either vRu or uRv. The accessibility relations of
ω-sequence frames are connected: if τ and ρ are distinct tails of σ, whichever
of them has greater rank is a tail of the other and hence accessible from it.
But H is not part of C2 or of even of C2 extended with the 4 axiom, since
order frames with transitive accessibility relations need not have connected
accessibility relations.

In addition to 4 and H, the logic of ω-sequence frames also includes
schemas which essentially involve the conditional in ways that cannot be
captured in the modal fragment of L. One such schema which we find
especially interesting is the following:

Flattening p > (pq > r)↔ pq > r

It is easy to see that Flattening is valid onω-sequence frames. The right hand
side is false at a sequence just in case it has a pq-tail and r is false at its first
pq-tail. The left hand side is false just in case it has a p-tail, and its first p-tail
has a pq-tail, and r is false at its first p-tail’s first pq-tail. But any sequence
with a pq-tail has a p-tail, and its first pq-tail is identical to the first pq-tail
of its first p-tail. So the two sides of Flattening have the same truth-value
in any pointed ω-sequence model. Indeed, to foreshadow a bit, note that
this reasoning depends just on the structure of the tailhood relation, not on
the ordinal structure of ω-sequences. That means that Flattening is valid on
sequence semantics whatever the domain of the underlying sequence. Indeed, we
will see that C2.F is the logic of ordinal sequence semantics—a variant of
ω-sequence semantics where the underlying sequences can take any ordinal
as their domain—while the logic of ω-sequences is strictly stronger.

On the other hand, there are pointed order models in which instances of
Flattening are false, such as the following four-world model:
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1 2p 3pq

2p 4pqr

3pq

4pqr

Here, each horizontal line represents the order induced at the left-most
(shaded) world, with a world appearing to the left of another just in case the
first precedes the second in the relevant ordering, so, e.g., <3 is the empty
order, while <2 is the order {⟨2, 4⟩}. Subscripts indicate atomic valuations.
Thus 1 ⊮ (p∧q) > r while 1 ⊩ p > ((p∧q) > r). We can obtain a counterexample
to the opposite direction of Flattening by making r true at 3 but false at 4.

Flattening will play an important role in what follows, so let’s give the
name C2.F to the result of adding it to C2. It is worth noting a few al-
ternative axiomatizations of this logic. First, Flattening is equivalent to the
corresponding schema using the strong conditional connective ≫, defined
by p≫ q := ¬(p > ¬q)) or equivalently, p≫ q := ♢p ∧ p > q:

≫-Flattening p≫ (pq≫ r)↔ pq≫ r

≫-Flattening can be obtained from Flattening by replacing r in Flattening
with¬r and negating both sides. Conversely,≫-Flattening entails that pq > r
and p > (pq > r) are equivalent modulo ♢(pq); but they are also obviously
equivalent when ♢(pq) is false, in which case they are both trivially true.

Second, we can obviously break up Flattening into its two directions

p > (pq > r)→ pq > rCautious Importation
(pq > r)→ p > (pq > r)Cautious Exportation

We can also give names to the special cases of these principles where r is a
contradiction ⊥. These can be written using our shorthand as

p > ¬♢pq→ ¬♢pqCrashing Cautious Importation
¬♢pq→ p > ¬♢pqCrashing Cautious Exportation

It turns out that given either one of Cautious Importation and Cautious
Exportation, we only need the ‘Crashing’ restriction of the other to get back
the full strength of Flattening. For example, to derive Cautious Exportation
from Cautious Importation plus Crashing Cautious Exportation, suppose
pq > r. If ¬♢pq, then p > ¬♢pq and hence p > (pq > r). Otherwise, ¬(pq > ¬r),
so by Cautious Importation ¬(p > (pq > ¬r)), so by CEM p > ¬(pq > ¬r), so
by CEM and Normality, p > (pq > r). The other derivation is analogous.
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Third, it is often convenient (especially in working with natural language
examples) to use “rule” forms of these axioms, where pq is replaced by any
q for which we have ⊢ q→ p. For example, we can also characterise C2.F as
the result of closing C2 under the following rule:

Flattening Rule If ⊢ p→ q then ⊢ q > (p > r)↔ p > r

This implies Flattening since ⊢ pq → p, and follows from Flattening by the
substitution of logical equivalents (since ⊢ p → q means that p is logically
equivalent to pq).

C2.F turns out to include many—though not all—of the distinctive prin-
ciples that hold inω-sequence models but not all order models. For example,
it includes both the modal axioms 4 and H. 4 is actually equivalent to Crash-
ing Cautious Exportation, as we can see by applying the rule form of that
axiom to the C2-theorem ¬p→ ¬□p to get

¬♢¬p→ ¬□p > ¬♢¬p

which simplifies to □p→ ¬□p > □p, or more briefly □p→ □□p.
For H, we use Crashing Cautious Importation (in rule form, applied to

the theorem p→ (p ∨ q)) to get:

(p ∨ q) > ¬♢p→ ¬♢p

Contraposing and applying CEM, this implies ♢p→ (p∨ q) > ♢p. By parallel
reasoning we also have ♢q→ (p ∨ q) > ♢q, and hence

(♢p ∧ ♢q)→ (p ∨ q) > (♢p ∧ ♢q)

But by CEM and Normality, ((p ∨ q) > p) ∨ ((p ∨ q) > q) is a theorem of
C2. Since of course we also have p > (p ∨ q) and q > (p ∨ q), we can apply
Reciprocity to derive

♢p ∧ ♢q→ (p > (♢p ∧ ♢q)) ∨ (q > (♢p ∧ ♢q))

Since ♢p and p > q entail ♢(p ∧ q) in C2, this implies the H axiom:

♢p ∧ ♢q→ ♢(p ∧ ♢q) ∨ ♢(q ∧ ♢p))

8 Evaluating Flattening

As we mentioned above, one way to interpret order models is as repre-
senting relative similarity between worlds. From the point of view of that
interpretation, it is no accident that Flattening fails: Flattening is in clear
tension with that interpretation of order models.

Schematically, similarity-based theories of the conditional predict Flat-
tening can fail because the most similar pq-world(s) to actuality need not be
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the most similar pq-world(s) to the p-world(s) most similar to actuality. For
a simple concrete example of this, consider a variation on a toy example of
Lewis’s involving a line L. Lewis’s similarity-based intuition was that, given
a world w where L has length n, if x and y are otherwise exactly alike, except
that in x the length of L is closer to n than it is in y, then x is more similar to
w than y is.

Now suppose that L is in fact 10 inches long, and compare (1-a) and (1-b):

(1) a. If L hadn’t been strictly between 8–11 inches, then if it hadn’t
been strictly between 8–13 inches, it would have been 13 inches.

b. If L hadn’t been strictly between 8–13 inches, then it would have
been 13 inches.

(1-a) and (1-b) instantiate the two conditionals in Flattening (in the rule-
based formulation from the last section) since not being strictly between 8–
13 inches entails not being strictly between 8–11 inches. But, if we interpret
conditionals via similarity, in particular with Lewis’s simple assumption
above, then (1-a) should be true while (1-b) is false. The world x most
similar to actuality where the line isn’t strictly between 8 and 11 inches is
one where it’s 11 inches. The world y most similar to x where the line isn’t
strictly between 8–13 inches is one where it’s 13 inches. So (1-a) is true. By
contrast, the world most like actuality where the line isn’t between 8 and 13
inches is one where it’s 8 inches, so (1-b) is false. (For a counterexample in
the opposite direction, change ‘it would have been 13 inches’ to ‘it would
have been 8 inches’.)

Is this counterexample convincing? We find it difficult to hear a clear
divergence between (1-a) and (1-b), except by doggedly holding in mind the
Lewisian interpretation of ‘if p. . . ’ as a proxy for ‘in the world most similar to
actuality where p is true. . . ’. Of course, a defender of a similarity-based view
could claim that we simply fail to clearly see a contrast which does exist here.
But they would need a story about why we make an error here, whereas
we have clear intuitions about many other subtle judgments recorded in
the literature on conditionals. Barring such a theory, the apparent validity
of Flattening might provide a new argument in the battery of well-known
arguments against similarity theories of conditionals.

Setting aside the baggage of similarity, we can try to evaluate Flattening
on its own terms, by considering pairs of sentences that would be logically
equivalent according to Flattening and seeing whether they in fact seem
equivalent. It seems to us that the results of this exercise speak in favor of
Flattening. For instance, compare these pairs:

(2) a. If Mark and Sue are at the party, there will be a conflagration.
b. If Mark is at the party, then if Mark and Sue are at the party, there

will be a conflagration.

(3) a. If he had gotten an espresso and it had been overextracted, he
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would have had a fit.
b. If he had gotten an espresso, then if he had gotten an espresso

and it had been overextracted, he would have had a fit.

These feel pairwise equivalent. At best, the (b)-variants feel redundant; the
first antecedent feels like it’s doing nothing. This is not explained by order
semantics, according to which the two variants have logically orthogonal
meanings. But this intuition is explained (given standard theories of redun-
dancy) if Flattening is valid, since then the (b)-variants are equivalent to
their consequents.

By relying on the rule form of Flattening, we can formulate test pairs that
feel somewhat less clunky:

(4) a. If he had gotten an espresso and it had been overextracted, he
would have had a fit.

b. If he had gotten an espresso, then he would have had a fit if he’d
gotten an overextracted one.

(5) a. If he had been in the south of France, he’d have had a great time.
b. If he had been in France, he’d have had a great time if he had

been in the south of France.

Again, these feel pairwise equivalent. We have checked many instances of
Flattening, in both the indicative and subjunctive mood, and have not found
clear counterexamples.

To be sure, there are superficial counterexamples to Flattening involving
tense and anaphora:

(6) a. If John wins, then if John and Sue win, John will have won twice.
b. If John and Sue win, John will have won twice.

(7) a. If a man came in, then if a man came in and a man came in, then
three men came in.

b. If a man came in and a man came in, then three men came in.

But it seems implausible that these are counterexamples to Flattening, and
more plausible that the felt inequivalence in these pairs arises from different
indexing of tense/anaphora in the two pairs. This is a somewhat delicate
issue, involving questions about the representation of context-sensitivity
that are beyond our scope. But it is worth noting that if we accept these as
counterexamples to Flattening, then we also have to accept that there are
counterexamples to the very widely accepted principle that p > (p > q) is
equivalent to p > q, since the following also feel pairwise inequivalent:

(8) a. If a man came in, then if a man came in, then two men came in.
b. If a man came in, then two men came in.

Thus Flattening seems, from the point of view of natural language, in at
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least as good prima facie standing as the principle that p > (p > q)↔ p > q (a
theorem of C2 as well as some weaker conditional logics), which is a strong
position to be in.

However, there are reasons for caution about taking these appearances at
face value. Flattening is a “cautious” cousin of the well-known Import-Export
axiom scheme:

Import-Export (IE) p > (q > r)↔ pq > r

The only difference between Flattening and Import-Export is that, in Flatten-
ing, p recurs in the antecedent of the conditional consequent on the left-hand
side, so we have p > (pq > r), rather than p > (q > r) as in IE. From a log-
ical point of view, this small difference is crucial, for, as Dale (1974), Dale
(1979), and Gibbard (1981), showed, adding IE to C2 (or, indeed, to many
weaker conditional logics) collapses the resulting logic of > to the material
conditional, that is, results in a logic that validates:

Materialism p > q↔ (p→ q)

Materialism is, however, widely rejected in the literature on conditionals, as
we noted above; see Edgington 1995 for many arguments against it. For a
brief argument, consider the claim that no tree is deciduous if it keeps its
leaves through the winter. According to materialism this entails that every
tree keeps its leaves through the winter, since the negation of p → q entails
p. But this is obviously wrong.

However, Flattening does not have the same suspect logical status: we
have already seen that it is valid in ω-sequence models; and Materialism is
not valid in ω-sequence models. For instance, in the ω-sequence model gen-
erated from σ = ⟨1, 2, 1, 2, . . .⟩, where p is false at σ and true at ⟨2, 1, 2, 1, . . .⟩,
while q is false at both sequences, the material implication p → q is true at
σ while the conditional p > q is false. Nor does Flattening lead to any other
troubling form of triviality, as ω-sequence models show. Moreover, at least
one error theory of the apparent validity of IE precisely relies, in part, on
the validity of Flattening (Mandelkern, 2024). So validating Flattening may
turn out to be a key stepping stone towards explaining the apparent validity
of IE.

A final observation is that there are compelling counterexamples to IE in
the case of subjunctive conditionals: e.g. the sentences in (9) can intuitively
diverge in meaning (Etlin, 2008).

(9) a. If the match had lit and it had been soaked in water, then it would
have lit.

b. If the match had lit, then it would have lit if it had been soaked
in water.

A standard desideratum in the theory of conditionals is to give a unified
theory of indicative and subjunctive conditionals: there is one word ‘if’
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which can express both conditionals, depending on the mood of the rest of
the sentence. So we have positive reason not to validate IE as a matter of the
logic of ‘if’, and instead to explain its apparent validity for indicatives, and
lack thereof for subjunctives, as arising from the interaction of the meaning
of ‘if’ with mood. But matters appear very different for Flattening, which
appears valid for both indicatives and subjunctives. The pairs which look
like counterexamples to IE for subjunctive conditionals still look equivalent
when we change them to instantiate Flattening:

(10) a. If the match had lit and it had been soaked in water, then it
would have lit.

b. If the match had lit, then it would have lit if it had been soaked
in water and it had lit.

In sum, despite their superficial similarity, Flattening and IE have very differ-
ent statuses vis-à-vis the theory of conditionals, and reasonable arguments
against validating IE, and instead giving some kind of error theory to explain
its apparent validity, do not extend to Flattening.

Nevertheless, we do not want to suggest that the case for the validity of
Flattening is anything like watertight. The strongest reason we see to worry
about involves the fact that, as already noted, it implies the 4 and H princi-
ples for the □ defined in terms of >. This is a potential warning sign, since
there are well known arguments against the 4 principle for many seemingly
relevant interpretations of □, and many of these arguments also extend to
the H principle. Williamson (2000) and Dorr, Goodman, and Hawthorne
(2014) argue against 4 on an interpretation where □means ‘a is in a position
to know that. . . ’. This suggests that 4 might also fail for the epistemic ‘must’
if its meaning is related to that of ‘know’; and the arguments can also be
adapted to directly use epistemic ‘must’. Insofar as the □ defined in terms
of > interpreted as an indicative conditional is equivalent to, or otherwise
intimately connected to, the epistemic modal, these considerations may also
threaten the 4 axiom for that □. Meanwhile, when we turn to the notion
of nomic necessity—which might be thought to be identical to the defined
□ on some counterfactual interpretations of >—we find influential forms
of Humeanism which motivate rejection of at least H and perhaps also 4.
On the ‘best system’ theory of laws (Lewis, 1994), being a nomic necessity
is being entailed by whatever collection of true axioms achieves the best
balance of simplicity and strength. On this picture, there could be a complex
world where there are two simple axioms both of which are false but nomi-
cally possible, and such that necessarily, if they are true, they are nomically
necessary. This is inconsistent with the connectedness of nomic accessibility,
and thus with H. (It is also arguable that Humeans should reject 4 for nomic
necessity, though we will not go into that here.) While it is not so plausible
that nomically necessary truths are counterfactually necessary on every in-
terpretation of counterfactuals, one might think that there are some salient
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of interpretations of counterfactuals that involve “holding the laws fixed”
in such a way that these Humean worries would carry over to 4 and H for
the defined □. There are also potential reasons for doubting both 4 and H
for metaphysical modality, which many take to be equivalent to □ defined in
terms of counterfactuals: Salmon (2005) rejects 4 for metaphysical necessity
in order to solve certain puzzles of Tolerance (though see Dorr, Hawthorne,
and Yli-Vakkuri, 2021 for an alternative approach to those puzzles which
preserves 4); meanwhile Bacon (2020) and Bacon and Dorr (2024) explore
versions of “combinatorialism” on which metaphysical modality would not
obey H.17

We will not here undertake to evaluate these arguments against 4 and H
for various familiar interpretations of necessity, or adjudicate the question
to what extent they carry over to the □ defined in terms of ‘if’. If we ac-
cept these arguments (for that defined □), we will have to reject Flattening,
and develop an error theory of its apparent validity. But the appearances
favoring Flattening are quite strong, so the difficulty of this task should not
be underestimated. In any case, we think it’s clear that the logic C2.F has
strong prima facie appeal as (at least part of) the logic of the natural language
conditional.

9 The logic C2.F

As we have already asserted, the logic ofω-sequence frames is not exhausted
by C2.F. To see why this is the case, and get some intuition of what is missing,
it will be useful to introduce a different class of order frames with respect to
which C2.F turns out to be both sound and complete, the flat order frames.

Definition 9.1.

– order frame ⟨W, <⟩ is collapsing iff for any x, y, z,w ∈ W, if x <w y and
either y ≤w z or z ∈ R(x) \ R(w), then y ≤x z.

– ⟨W, <⟩ is flat iff it is collapsing and has a transitive accessibility relation.

Note that in a transitive frame, the case where x <w y and z ∈ R(x) \ R(w)
cannot arise, since x ∈ R(w) guarantees R(x) ⊆ R(w). So to be flat is to be such
that, for any x, y, z,w ∈W, if x <w y and y ≤w z, then y ≤x z.

It may be helpful to think about this constraint as follows. An order
function is equivalent to a function that associates with each world w a non-
repeating sequence τw of worlds indexed by some positive ordinal, with
w as its first member. In these terms, a flat order-model is one such that
whenever x occurs in τw, τx can be obtained by first truncating τw at x, and

17On these views, we can have propositions p and q—e.g., the results of predicating
two different fundamental properties of some fundamental individual—such that it is
metaphysically possible both that p = q and that p = ¬q. But p = q entails ¬♢(p = ¬q) and
p = ¬q entails ¬♢(p = q), so this violates H.
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Figure 1: Illustrations of a flat order function (left) and a non-flat (because non-
collapsing) order function (right) in frames with worlds {1,2,3,4}.

then optionally adding back worlds that come before x in τw. See Figure 1
for an illustration of a flat and non-flat order frame.

We can show that Flattening is valid on all flat order frames. In fact,
flatness characterizes Flattening, in the sense that the order frames on which
Flattening is valid are exactly the flat ones. Since we already know that
Flattening is equivalent to the combination of Cautious Importation with
Crashing Cautious Exportation, and that the latter is equivalent to 4 which
is characterized by transitivity, it suffices to prove the following lemma:

Lemma 9.2. Cautious Importation is valid on an order frame ⟨W, <⟩ iff it is
collapsing.

Proof.

⇒ Suppose that for some w, x, y, z, x <w y and either

(a) y <w z and y ≮x z; or

(b) z ∈ R(x) \ R(w) and y ≮x z.

In case (a), there are three possibilities:

◦ if y < R(x), let V(p) = {x, y},V(q) = {y},V(r) = ∅;

◦ if y ∈ R(x) and z < R(x), let V(p) = {x, z},V(q) = {z},V(r) = ∅;

◦ if z <x y, then let V(p) = {x, y, z},V(q) = {y, z},V(r) = {z}.

In case (b), let V(p) = {x, z, y},V(q) = {z, y},V(r) = {z}.

⇐ Suppose that ⟨W, <⟩ satisfies is collapsing, and consider any V and
w ∈ W such that w ⊩ p > (pq > r). If there is no pq-world in R(w), then
w ⊩ pq > r and we are done; so we can assume that there is a pq-world
in R(w). Let u be the first pq-world in<w, and let x be the first p-world in
<w. If x , u, then we have x <w u ≤w u, and hence u ≤x u, i.e. u ∈ R(x);
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so there is at least one pq-world in R(x). Consider any pq-world z in
R(x). If z ∈ R(w), we have u ≤w z and hence u ≤x z (since x ≤w); if
z ∈ R(x) \ R(w), we also have u ≤x z, since every world in R(w) ∩ R(x)
precedes any world in R(x) \ R(w). Thus u is also the first pq-world in
<x. Since p > (pq > r) is true at w, pq > r is true at x and so r is true at
u; so w ⊩ pq > r. □

Since Flattening is the result of adding 4 to Cautious Importation, we can
conclude that it is characterized by flatness:

Theorem 9.3. Flattening is valid on an order frame ⟨W, <⟩ iff ⟨W, <⟩ is flat.

Proof. If ⟨W, <⟩ is flat, then Cautious Importation is valid on it by the lemma,
and by transitivity 4 and hence Crashing Cautious Exportation are also valid
on it, hence Flattening is valid on it. Conversely, if Flattening is valid on the
frame, then Cautious Importation is, so it is collapsing by the lemma, and
also 4 is, so it is transitive. □

We can also formulate frame conditions that characterize Cautious Ex-
portation and Crashing Cautious Importation; the combination of these
conditions is also equivalent to flatness, since the conjunction of the axioms
is equivalent to Flattening.18

With this characterization result in hand, we can turn to soundness and
completeness results for C2.F. The right-to-left direction of Theorem 9.3 says
that C2.F is sound for flat order frames: that is, all the theorems of C2.F are
valid on every flat order frame. However, completeness is another matter: a
characterization result like Theorem 9.3 does not entail a completeness result.
Abstractly, a characterization result for a logic L against a background class
of frames F specifies the subset FL of F such that for all F ∈ F , F ∈ FL iff
L is valid on F. However, it is possible that FL characterizes L but L is not
complete with respect to FL, when there is some sentence p which is valid
on every F ∈ FL but is not a theorem of L: intuitively, when the set FL is too
small to find a countermodel to every non-theorem of L.

For a simple toy example to illustrate this sort of situation, consider the
“logic” C2.A comprising the theorems of C2 together with a single atom,
A. ‘Logic’ is in scare quotes since this logic is not closed under uniform
substitution, and hence is not a logic in an ordinary sense; however, this
provides a very simple illustration of the dialectical situation. If we view it
as a logic, C2.A is characterized by the empty class of order frames, since
A is not valid on any frame. However, C2.A is not complete with respect to
the empty class of order frames, since it is not true that every non-theorem
of this logic has a countermodel in that class.

18Cautious Exportation is valid on ⟨W, <⟩ iff it is transitive and for all w, x, y, z, if x <w y <w
z and z ∈ R(x), then y <x z. Crashing Cautious Importation is valid on ⟨W, <⟩ iff whenever
x <w y, y ∈ R(x).
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C2.A is, of course, not an interesting example of an incomplete modal
logic, since, again, C2.A is not a normal modal logic in the usual sense
because it is not closed under uniform substitution of sentence letters. How-
ever, there are in fact normal modal logics closed under uniform substitution
which are not complete with respect to the class of modal frames that charac-
terize them (see Fine 1974; Thomason 1974; van Benthem 1978; see Holliday
and Litak 2019 for a helpful recent overview and discussion). So we cannot
simply assume that a characterization result yields a corresponding com-
pleteness result. Moreover, the fact that many extensions of C2 (including
C2.F) are not strongly complete for any class of order frames (as we dis-
cussed in Section 4.1) means that the standard canonical model method for
proving completeness will not work for these logics.

With all that said, we do in fact have a (weak) completeness result for
C2.F: in the appendix, we show that C2.F is complete for flat order frames.
Indeed, we show that it is complete for finite such frames:

Theorem 9.4. C2.F is complete with respect to finite flat order frames: i.e.,
every sentence valid in all finite flat order frames is a theorem of C2.F.

Because of its restriction to finite frames (and the fact that flatness is a
decidable property of frames), this result has the corollary that C2.F is
decidable.

One noteworthy corollary of the soundness direction of Theorem 9.3 is
that the two modal schemas 4 and H we mentioned in section 7 in fact
exhaust the purely modal content of C2.F. Here are the two axioms again:

□p→ □□p4
(♢p ∧ ♢q)→ (♢(p ∧ ♢q) ∨ ♢(q ∧ ♢p))H

The modal logic that adds these two axiom-schemes to KT is called S4.3, and
it is well known that it is sound and complete (indeed strongly complete)
for modal frames with a reflexive, transitive, and connected accessibility
relation. (It is also weakly complete for finite such frames.) We can show that
the modal logic in C2.F is exactly S4.3 by showing that any modal frame
with such an accessibility relation can be endowed with a flat order function
inducing the same accessibility relation.

Theorem 9.5. When p belongs to the modal fragment of L, ⊢C2.F p iff ⊢S4.3 p.

Proof. We already established the right-to-left direction in section section 7.
By the completeness theorem Theorem 9.4, we can also give a simple model-
theoretic proof: it is straightforward to see that every flat order model has
an accessibility relation that is reflexive, transitive, and connected; thus if p
is true in every reflexive transitive connected modal model, it is also true in
every flat order model, and thus a theorem of C2.F by completeness.

For the left-to-right direction, we need a recipe to transform a finite
reflexive, transitive, and connected modal frame ⟨W,R⟩ into a flat order
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frame ⟨W, <⟩whose accessibility relation is R. Fix a strict well-order < of W,
and let x <w y iff wRx and xRy and one of the following conditions obtains:

(i) not yRx

(ii) yRx and not xRw and x < y

(iii) yRx and xRw and w < x < y or x < y < w or y < w < x or w = x , y.

It is easy to see that w <w x iffwRx and x , w, so that the accessibility relation
defined in terms of < coincides with R.

To show that each <w is connected on R(w), suppose wRx and wRy and
x , y but not x <w y. Then we must have yRx by condition (i). If not xRw,
then not x < y by condition (ii), so y < x since< is a total well-order, and also
not yRw by transitivity, so y <w x by condition (ii). If xRw, then we cannot
have w < x < y or x < y < w or y < w < x, so we must have w < y < x
or y < x < w or x < w < y; moreover, yRw by transitivity, so y <w x by
condition (iii). Since the model is finite, it follows from this that each <w is
well-founded on R(w).

To show that < is collapsing, suppose x <w y and y <w z. Then wRx, xRy,
and yRz. If not zRy, then y <x z by case (i). If zRy but not yRx, then not yRw
by transitivity, so we have y < z since y <w z, and hence also y <x z by case
(ii). If zRy and yRx but not xRw, then again not yRw by transitivty, so we
have x < y and y < z since x <w y and y <w z, so y <x z by case (iii). Finally,
if zRy, yRx, and xRw, also yRw by transitivity. If w = x, we immediately
have y <x z by substitution, so assume w , x; also, w , y since x <w y. Then
case (iii) obtains for both x <w y and y <w z, so w, x, y are in the cyclic order
w < x < y < w, and also w, y, z are in the cyclic order w < y < z < w. from
which it follows that x < y < z < x and so y <x z by case (iii). □

A corollary of this result is that C2.F cannot be axiomatized by adding any
purely modal principles (such as 4 or H) to C2. For it is easy to see that
there are non-flat order frames with a transitive and connected accessibility
relation: the non-flat frame in Figure 1 is an example. Such frames do not
validate all of C2.F, but do validate all its purely modal theorems.

Finally, we can use the soundness of C2.F for flat order frames to show
that C2.F does not include all the sentences that are valid on all ω-sequence
frames. Consider the flat order model in Figure 2.

It is easy to see that ¬(pq) > p and ¬(pq) > p are both false at 1 and 2 and
both true at 3. Thus all of the following are true at 1:

(a) ¬p
(b) ♢pq
(c) (¬(pq) > q) > pq
(d) (p > q) > pq
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1 2p 3pq

2p 1 3pq

3pq

Figure 2: A flat order model which is not equivalent to any ω-sequence
model.

But these four sentences cannot be true together in any ω-sequence model.
For (a) and (b) to be true, the designated sequence σ must be a ¬p-sequence
with a pq-tail. Let τ be σ’s first pq-tail, and let ρ be the last tail of σ before τ. If
ρ is an pq-sequence, ¬(pq) > q is true at it, since its first pq-tail is τ. But then
(c) is false at σ, since the antecedent is true at ρ, which comes earlier than
any pq-tail. Likewise, if ρ is a ¬p-sequence, p > q is true at it, since its first
p-tail is τ. But then (d) is false at σ, for the same reason.

10 Sequentiality

We have now seen that the logic of ω-sequences is strictly stronger than
C2.F. We will presently show that in fact the logic of ω-sequences is exactly
C2.F together with the negation of the conjunction of (a)–(d); that is, all we
need to do to get a logic that corresponds to ω-sequence frames is to rule
out configurations like that in Figure 2.

To see why, let us try to understand what it takes for a flat order frame to
be isomorphic to an ω-sequence frame. A distinctive feature of ω-sequence
frames is that all the tails of a given sequence σ can be reached by some
finite number of steps, where, starting with σ, at each step we lop a single
protoworld off of the beginning of the sequence. This is an instance of a
more general property that order frames in general can have: namely, that
any world x accessible from a world w can be reached by a finite number of
steps starting from w, where each step takes us from a world v to the first
world after v in <v. We call this property being ancestral.

Definition 10.1. Given an order frame ⟨W, <⟩:

– The successor of w, succ(w), is w if R(w) = {w}, and otherwise the first
world after w in <w.

– The successor-sequence αw of w is the ω-sequence starting with w where
each element after the first is the successor of the previous element.

– x is reachable from w iff x is an element of αw, i.e. w is related to x by the
ancestral of the successor relation.
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– When x is reachable from w, the rank of x from w is the least n such that
x is the nth element of αw.

– Finally, a frame is ancestral iff every world accessible from any given
world is also reachable from that world.

Note that in any flat frame, when v is the successor of w, R(v) is either
R(w) or R(w) \ {w}, and <v agrees with <w on R(w) \ {w}. This means that
the worlds reachable from w are always a subset of R(w). Moreover, within
the subset of reachable worlds, x <w y iff the rank of x from w is less than
that of y. For if x precedes y according to w and x , w, then x also precedes
y according to w’s successor, and so on until we reach x; since x certainly
does not precede y according to y, this means that as we take successor steps
from w we must reach x before we reach y. If the frame is ancestral as well
as flat, then, since reachability and accessibility coincide, this means that we
can read off the order function from the successor function: that is, in a flat
ancestral frame, αw is exactly the sequence of worlds induced by <w (what
we above called τw), followed by infinite repetitions of the last element of
τw, if there is one.

By contrast, not every flat frame is ancestral. This is illustrated in the
frame of the model in Figure 2, which is repeated as <1 in Figure 3. Here
accessibility and reachability do not coincide, even though the frame is
flat. For instance, in this frame, 1 and 2 are each other’s successors, so
3 is not reachable from 1, despite being accessible from 1: that is, α1 =
⟨1, 2, 1, 2, 1, 2 . . .⟩ and never contains 3.

As we have noted, every ω-sequence frame is ancestral as well as flat.
Of course, not every flat ancestral frame is an ω-sequence frame; the worlds
in a flat ancestral frame need not be sequences. But every flat ancestral
frame ⟨W, <⟩ is isomorphic to an ω-sequence frame: the one we obtain by
replacing each w ∈ W with its successor-sequence αw. For example, the
frame ⟨{1, 2, 3}, <2

⟩ illustrated in the center of Figure 3 is isomorphic to the
ω-sequence frame with sequences ⟨1, 2, 3, 3, 3 . . .⟩, ⟨2, 3, 3, 3, 3 . . .⟩, ⟨3, 3, 3 . . .⟩;
likewise, the frame ⟨{1, 2, 3}, <3

⟩ in the right of Figure 3 is isomorphic to
the ω-sequence frame with sequences ⟨1, 2, 3, 1, 2, 3 . . .⟩, ⟨2, 3, 1, 2, 3, 1 . . .⟩,
⟨3, 1, 2, 3, 1, 2 . . .⟩.

In general, αsucc(w) is obviously always the first tail of αw, i.e. the result
of deleting the first element from αw. So, the set {αw | w ∈ W} is closed
under tails, meaning we can regard it as a sequence-frame with W as its
set of protoworlds. Moreover, since the first tail of any sequence is also
its successor, the function w 7→ αw preserves the successor-function on the
original frame. Since the order function of any flat and ancestral frame can
be read off the successor function, it follows that this function also preserves
the order function, in the sense that x <w y iff αx <αw αy. (We already noted
that x <w y iff x first occurs before y in αw; since αx and αy are respectively the
first tails of αw starting with x and y, this is true iff αx <αw αy.) We thus have
an isomorphism from ⟨W, <⟩ to the sequence-frame comprising the successor
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1 2 3

2 3

3
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1 2 3

2 3 1

3 1 2

<3

Figure 3: Illustrations of a flat but not ancestral frame <1, and two ancestral
frames <2, <3. In <1 there is no way to get from 1 to 3 by the successor
relation, since you end up stuck in a loop between 1 and 2.

sequences. So the task of axiomatizing the logic of ω-sequence frames is the
same as the task of axiomatizing the logic of flat ancestral order frames.

To see how we can characterize the class of flat ancestral frames, let’s start
by considering finite flat frames where ancestrality fails, like <1 in Figure 3.
In fact, every flat finite frame where ancestrality fails will have to embed a
configuration like that in <1. The failure of ancestrality means that there is a
world (like 1 in this case) which can access some world which it can’t reach
(in this case, 3). In a frame which is both flat and finite, this can happen
only when, in taking successor steps from the given world, we eventually
find ourselves trapped on a loop, where the unreachable world is accessible
from but not reachable from any world in the loop. In <1, the loop comprises
just worlds 1 and 2. In general, it can have any finite size, and the world
we started with need not be part of the loop: for example, in the frame in
Figure 4, when we start from world 1, we end up on the loop comprising
worlds 3, 4, and 5. But somewhere in the frame, we will have to find the
configuration illustrated in Figure 5: take b to be any world on the loop, a
to be b’s successor, and c to be the first world after b in <a; then c is also not
reachable from b, since as we take successor steps from b we will inevitably
find ourselves back at b before we come to c. If we pick a valuation where
atom p is true only at b and c and atom q is true only at c, our sentences
(a)–(d) (repeated here) will then be true at a for the same reason as before:

(a) ¬p
(b) ♢pq
(c) (¬(pq) > pq) > pq
(d) (p > pq) > pq

(c) and (d) are both true at a because whenever w <a c, we have both a <w c
and b <w c; hence neither (¬pq > pq) nor p > pq is true at any such w, meaning
that c is the first world in <a where either of these conditionals is true.

If the number of worlds is infinite, we could have failures of ancestral-
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1 2p 3 4p 5 6pq

2p 3 4p 5 6pq

3 4p 5 2p 6pq

4p 5 3 2p 6pq

5 3 4p 2p 6pq

6pq

Figure 4: A more complicated flat non-ancestral frame, with a valuation that
makes (a)–(d) true at 1

bp a
. . .

cpq

. . .

a
. . .

bp cpq

. . .

Figure 5: Every finite order frame which is flat but not ancestral contains a
configuration with this structure: given the subscripted valuation, Sequen-
tiality fails at a.

ity that don’t involve loops (and hence don’t involve the configuration in
Figure 5)—for example, in the frame whose worlds are the natural numbers
together with the first infinite ordinal ω, where each world sees exactly the
worlds that are above it, with their standard ordering,ω is accessible but not
reachable from any other world. But so long as there are some v and w such
that v is accessible but not reachable from w, we can always find a valuation
that makes (a)–(d) all true at w: let the valuation make atom q true only at
v, and atom p true only at v together with those worlds reachable from w
whose rank from w is odd. (Figure 4 shows what this looks like taking w = 1
and v = 6.) Then again (a)–(d) will all be true at w, since ¬pq > pq and p > pq
are true at v but not at any world earlier than v in <w. By contrast, in a flat
and ancestral model, the conjunction of (a–d) cannot be true at any world w:
by (a) and (b), there must be a first pq-world in <w, which must be reachable
from w in some nonzero number of successor steps. If it was immediately
preceded by a p-world, ¬pq > pq is true there, while if it was immediately
preceded by a p-world, p > pq is true there. In the first case, (c) is false at w,
and in the latter, (d) is false at w. So, the negation of the conjunction of (a)–
(d) gives us what we are looking for: a formula valid on every flat ancestral
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frame, and not valid on any flat non-ancestral frame. We can simplify this
negated conjunction a little by re-expressing it as (c) → ¬(a) ∨ ¬((b) ∧ (d)),
and noting that ¬((b)∧ (d)) is equivalent (in C2) to (p > q) > p. This gives us
the following characterizing axiom:

Sequentiality ((p ∨ q) > p) > q→ p ∨ ((p > q) > p)

Let C2.FS be the logic derived from C2.F by adding Sequentiality as an
additional axiom-scheme. Then we have shown:

Theorem 10.2. C2.FS is valid on an order frame iff it is flat and ancestral
(and hence iff it is isomorphic to an ω-sequence frame).

Proof. We build on Theorem 9.3 by showing that a flat order frame validates
every instance of Sequentiality iff it is also ancestral. We have already proved
this in the running text, but we will briefly recapitulate the proof here.

⇒ Suppose ⟨W, <⟩ is flat but not ancestral, where w can access but not
reach v. Then value p true at v and at worlds whose rank from w is
odd, and q true just at v. w verifies ((¬p ∨ q) > p) > q, since the first
accessible world in w verifying the antecedent is v. But w doesn’t verify
p (since its rank from w is 0), nor does it verify (p > q)¬p, since v is the
first p > q-world in R(w).

⇐ Suppose ⟨W, <⟩ is flat and ancestral. Consider w ∈ W. Suppose w
verifies the premise of Sequentiality, ((¬p ∨ q) > p) > q, but doesn’t
verify p. If R(w) contains no pq-world, then either (i) p > q is true
nowhere in R(w), in which case (p > q) > ¬p is trivially true at w; or (ii)
p > q is first true at some ¬p-world in R(w), so (p > q) > ¬p is true at w.
If R(w) contains a pq-world, let z be the first such world in <w, and let y
be the world just before z in <w (the existence of such a y is guaranteed
by ancestrality). We show that y ⊩ ¬p; by ancestrality, the successor of
y is z, and hence y ⊩ p > q; hence the first p > q-world in <w is either
y or some earlier ¬p-world, so w ⊩ (p > q) > ¬p. To see that y ⊩ ¬p,
suppose otherwise, so y ⊩ p ∧ ¬q. But then since the successor of y is
z, y ⊩ (¬p ∨ q) > p. Hence either y or some other ¬q-world is the first
(¬p ∨ q) > p-world in <w, meaning that w ⊮ ((¬p ∨ q) > p) > q contrary
to assumption.

□

10.1 The completeness of C2.FS

Theorem 10.2 tells us that C2.FS is sound forω-sequence frames. As we em-
phasized in the discussion before Theorem 9.4, characterization results do
not always yield corresponding completeness results. However, once more,
our characterization result does indeed point the way towards a complete-
ness result: in the appendix, we show that C2.FS is complete forω-sequence
frames by showing the stronger result in Theorem 10.3:
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Theorem 10.3. C2.FS is complete for finite ω-sequence frames.

This immediately implies:

Theorem 10.4. C2.FS is complete for finite flat ancestral order frames.

As before, the restriction to finite frames (and the fact that the question
whether an order frame is flat and ancestral is decidable) gives us the de-
cidability of C2.FS as a corollary.

10.2 The modal logic of C2.FS

S4.3.1 is the result of adding every instance of Dum to S4.3:

Dum: □(□(p→ □p)→ p)→ (♢□p→ p)

S4.3.1 is sound for frames in which the accessibility relation (quotiented
on accessibility-equivalent classes) has no final segments with order type
greater than ω, and (weakly) complete for {⟨N,≤⟩}.19

Theorem 10.5. When p is a modal sentence, ⊢C2.FS p iff ⊢S4.3.1 p.

Proof.

⇐ By the completeness of C2.FS with respect to flat ancestral order mod-
els.

⇒ Suppose p is consistent in S4.3.1; then it is true at 0 in some model M
based on ⟨N,≤⟩. This can be extended into the minimal ω-sequence
frame, which has the same domain and has ≤ as its accessibility rela-
tion; p will also be true in that frame, so by the soundness of C2.FS for
ω-sequence frames, p is consistent in C2.FS. □

10.3 Sequentiality in natural language

As with Flattening, we’d like to know whether Sequentiality is in fact valid.
Unfortunately, this is not easy to assess; the inference pattern is too complex,
and in particular involves too much left-nesting, to easily judge. Hence
consider:

(11) If Mark is going if either Mark isn’t going or Sue is going, then Sue
is going. So, either Mark is going, or else, if Sue is going if Mark is
going, then Mark isn’t going.

(12) If the espresso would have been overextracted if either the espresso
wasn’t overextracted or he had gotten mad, then he would have
gotten mad. So, either the expresso was overextracted, or if he would
have gotten mad if it was overextracted, then it wasn’t overextracted.

It seems hopeless to try to figure out whether these inferences are valid by
consulting empirical judgments.

19Bull 1966; Segerberg 1970
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10.4 A simpler axiomatization?

Given how difficult it is to grok English instances of Sequentiality, it is natural
to ask is whether there might be an axiomatization of C2.FS which is easier
to assess. While we cannot rule this out, we can rule out one possibility.
Part of what makes Sequentiality especially hard to assess is the left-nested
conditionals it contains: left-nesting is generally hard for English speakers to
process (see Kaufmann 2023 for some recent discussion). But in the language
restricted to disallow left-nesting, the logic of ω-sequence models is C2.F.
That is:

Theorem 10.6. When p ∈ LBA, ⊢C2.F p iff ⊢C2.FS p.

where

Definition 10.7. The Boolean languageLB is the standard language of propo-
sitional logic:

q ::= pk ∈ At | ¬q | (q ∧ q)

The Boolean-antecedent languageLBA is the language which adds conditionals
to LB but only when the antecedent is conditional-free

p ::= pk ∈ At | ¬p | (p ∧ p) | (q > p) : q ∈ LB

This is proved in Appendix E. This makes us doubt we’ll find an axiom
scheme (or schemes) which distinguish C2.FS from C2.F about which we
have clear intuitions.20

11 Ordinal sequence frames

Sequentiality doesn’t look particularly well-motivated. This is somewhat
surprising, since ω-sequence semantics looks very simple and natural, and
contrasts with Flattening, which looks like a serious contender to be part of
the correct conditional logic.

Of course, one reaction to the complexity of Sequentiality is this: we
certainly won’t find any compelling counterexamples to Sequentiality. So
we should validate it, since we should in general validate the strongest logic
compatible with our reflective intuitive judgments.

On reflection, however, this is a bad argument. There are infinitely many
logical principles whose shortest statement is too complex for any human to
process and hence such that we can be sure no compelling counterexample
to them will ever be discovered. Should we add all of them to our logic?
Surely not, since some of them will be inconsistent with each other. But then
which ones should we choose? There is no principled way of answering this.
So we think that C2.FS is not a compelling candidate conditional logic.

20A different possibility, which Wesley H. Holliday suggested, is to look for a rule or rules
instead, which may be easier to assess. This is an interesting option which we leave open.
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It is prima facie surprising that a semantics as apparently natural as
ω-sequence semantics should give rise to such a peculiar logic as C2.FS,
especially when the first step towards our axiomatization, namely the addi-
tion of Flattening to C2, is on the face of it much more compelling. From the
other direction, we have seen that C2.F is sound and complete with respect
to flat order models, a somewhat finicky class of order models.

On reflection, however, the class of ω-sequence frames is restricted in
a somewhat arbitrary way: namely, by the restriction to ω-sequences in
particular. There is a natural generalization of this approach which bases
the same kind of semantics on arbitrary ordinal sequences. As we will now
see, the class of ordinal sequence frames is sound and complete for C2.F
rather than C2.FS.

Definition 11.1. An ordinal sequence frame is an order frame ⟨W, <⟩ where
W is a set of (possibly transfinite, possibly finite) sequences closed under
tailhood, and < is the tail order function on W.

An ordinal sequence model is an ordinal sequence frame with a valuation; a
pointed ordinal sequence model adds a distinguished sequence. Note that as
we already saw with ω-sequence frames, an ordinal sequence frame can be
finite (i.e., have a finite W) even if some or all of the sequences that comprise
W are transfinite. (We will always use ‘finite ordinal sequence frame’ to refer
to an ordinal sequence frame with a finite set of sequences.)

Theorem 11.2. C2.F is sound for ordinal sequence models, and weakly
complete for finite ordinal sequence models in which the domain of every
sequence is an ordinal less than ωω.

For soundness, it suffices to show that all ordinal sequence models are flat,
which is easy. The completeness result is proved in ??. In fact, it is by showing
the completeness of C2.F for ordinal sequence models (and appealing to the
fact that these models are flat) that we prove ??, the completeness of C2.F
for flat order models.

Indeed, there is a natural sense in which there is no difference between
the two kinds of model: every ordinal sequence frame is already a flat or-
der frame, and every flat order frame is isomorphic to an ordinal sequence
frame. Intuitively, one can turn a flat order frame ⟨W, <⟩ into an ordinal se-
quence frames by replacing each world w with an ordinal sequence defined
by proceeding out along <w, but inserting a block of ω many loops when-
ever we meet worlds v for which <v begins with worlds we have already
encountered. The formal details of this procedure are somewhat involved,
so we omit them here.

12 List frames and successor-ordinal frames

Just as we can expand the notion of an ω-sequence frame to an ordinal
sequence frame, likewise it is interesting to explore various restrictions on
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ordinal sequence frames. In this section we will explore just two of these
which are naturally related: ordinal sequence frames whose sequences all
have a finite domain, and ordinal sequence frames whose sequences all have
as their domain a successor ordinal, i.e., an ordinal with a final element.
The first class is of obvious interest for reasons of simplicity, and has been
discussed in the recent literature (Khoo and Santorio, 2018; Khoo, 2022); the
second class, as we will see, is related to the first as ordinal sequence frames
are to ω-sequence frames.

Definition 12.1. Given a non-empty set P, a list over P is a sequence over P
whose domain is a finite ordinal.

An ordinal sequence frame ⟨W, <⟩ is a list frame when W is a set of lists.
The logic of list frames is obviously at least as strong as C2.FS, because

any k-length list ⟨w0, . . .wk−1⟩ is isomorphic to theω-sequence ⟨w0, . . .wk−1,wk−1,wk−1 . . .⟩
which transforms the list into an ω-sequence by repeating the last world of
the list infinitely. However, the logic of lists is strictly stronger than C2.FS:
it is the logic which strengthens C2.FS with every instance of the McKinsey
axiom scheme:21

McKinsey: □♢p→ ♢□p

McKinsey fails in ω-sequence frames: for instance, in the ω-sequence model
based on ⟨1, 2, 1, 2, . . .⟩, where p is true ⟨1, 2, 1, 2, . . .⟩ but false at ⟨2, 1, 2, 1 . . .⟩,
□♢p is true at ⟨1, 2, 1, 2, . . .⟩ while ♢□p is false there. But McKinsey is valid
on lists, since every list comes to an end: so if □♢p is true at a list, so that
every tail of the list can access some p-tail, then the last (singleton) tail of the
list must be a p-tail which can only access itself, and hence is an accessible
□p-tail.

Theorem 12.2. Let C2.FSM be C2.FS plus every instance of the McKinsey
axiom scheme. C2.FSM is sound and complete with respect to list models.

Soundness follows from the soundness of C2.F with respect to all ordinal
sequence frames, of which list frames are a special case, together with the
reasoning in the text just now. For completeness, see appendix.

Note that the reasoning that shows that McKinsey is sound for list models
is essentially about the fact that a list has a final tail, and not about the fact
that the list is finite. Hence C2.FSM is also sound and complete with respect
the class of ω-frames whose sequences all comprise some list followed by a
constant ω-sequence.

But, likewise, McKinsey is valid over the class of ordinal sequence frames
which have a final tail, no matter how long they are. Let a successor sequence
frame be an ordinal sequence frame ⟨W, <⟩where W contains only sequences
whose domain is a successor ordinal, i.e., an ordinal with a final element.

21An equivalent axiomatization can be given with the Grzegorczyk Axiom □(□(ϕ →
□ϕ)→ ϕ)→ ϕ.
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Theorem 12.3. Let C2.FM be C2.F plus every instance of the McKinsey
axiom scheme. C2.FM is sound and complete with respect to successor
ordinal sequence frames.

Soundness is by the reasoning just as above; completeness is proved in the
appendix. Indeed, once more, what is crucial to this result is not really being
a successor ordinal but rather having a final tail in the sense that there is
some β such that σ[β:] is defined and for any α, σ[β:] = (σ[β:])[α:] whenever the
right-hand side is defined (that is, σ’s domain is the sum of some ordinal
with a second ordinal which is additive principal, i.e. not the sum of two
ordinals; and σ’s value on the second ordinal is constant). So, equally we
have that C2.FM is sound and complete for the class of sequence frames
⟨W, <⟩ such that every σ ∈W has a final tail.

We have now seen four logics which are sound and complete for differ-
ent classes of ordinal sequence models: namely, C2.F, C2.FS, C2.FM, and
C2.FSM. But we have only brushed the surface: for every class of ordinal
sequence models, we can ask whether it corresponds to an interesting logic,
potentially revealing infinitely many new interesting conditional logics. Ben-
jamin Przybocki (p.c.) has reported interesting results on the axiomatization
of classes of ordinal frames in which the length limit is any ordinal strictly
between ω and ωω.

13 Is there a probability-theoretic argument for C2.FS?

Since van Fraassen came up with a class of models that validates both
Flatness and Sequentiality as a byproduct of trying to show the consistency
of a restricted version of Stalnaker’s Thesis, one might wonder whether there
is some interesting argument from some version of that Thesis to Flatness
and/or Sequentiality.

For Sequentiality, the answer is a straightforward no. What van Fraassen
actually shows in his paper is the following:

Fact 13.1. If π is a probability measure on P and π∗ is the induced product
measure on Pω, and V is a valuation on the sequence frame Pω in which
denotations of atoms never distinguish between sequences with the same
first element, then π∗(Jp > qK) = π∗(JqK | JpK) whenever π∗JpK > 0 and each of
p and q is either Boolean (a truth-functional combination of atoms), or one
is Boolean and the other is a zero-degree conditional (a conditional with a
Boolean antecedent and consequent).22

22Here, a probability measure on P is a (countably-additive) probability measure whose
domain is some σ-algebra of subsets of P. Given any probability measure on P and any
index set I, there is a natural product measure π∗ on PI. Informally, π∗ treats each i ∈ I like
a fresh draw of a member of P from an urn, with the probabilities on each draw given
by π. More carefully, we say that Y ⊆ PI is a cylinder set iff there is a finite set X ⊆ I,
and a function g : X → P(P), such that g(i) is in the domain of π for all i ∈ X, and
Y = { f | f (i) ∈ g(i) for all i ∈ X}. The domain of π∗ is defined to be the smallest σ-algebra of
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Using a straightforward generalization of van Fraassen’s proof, one can
prove a stronger result along the same lines:

Fact 13.2. Where π, π∗, and V are as in the previous fact, π∗(Jp > qK | JrK) =
π∗(JqK | JpK) whenever π∗(JpK) > 0, π∗(JrK | JpK) = 1 and each of p and r
is a conjunction in which each conjunct is either Boolean or a zero-degree
conditional.23

The proof of Fact 13.2 goes through without modification if, instead of the
set of all ω-sequences over P, we consider the set of all α-sequences over P
for any other transfinite ordinal α. From the point of view of the probabilities
of conditionals, all that matters about the sequences is their first ω elements:
so long as the antecedent p has positive probability and is a conjunction of
Booleans and zero-degree conditionals, the set of all sequences such that p is
true at their nth tail for some finite n has probability 1, so the new distinctions
introduced by allowing transfinite sequences make no difference when it
comes to conditionals with positive-probability antecedents, which are the
only ones relevant for Fact 13.2.24

This also shows that getting the above facts will not require models
that strictly validate Flattening—we can easily allow failures of flatness so
long as they only show up among worlds accessible but not reachable from
the distinguished w, since this will still let us represent worlds as ordinal
sequences with an order-function that agrees with the sequence-model order
function as regards the initial ω-subsequences. Still, it would be interesting
if some weakening of flatness played a crucial role in securing the relevant
restriction of Stalnaker’s Thesis, since this might provide the basis for a
simplicity argument for the validity of Flattening (or at least for the truth of
its instances involving positive-probability propositions).25

As it turns out, however, there is variant of van Fraassen’s consistency
result that uses a different kind of model that does not validate Flatness,
or anything beyond C2, that provides something pretty close to Fact 13.2.

subsets of PI that contains all the cylinder sets. π∗ is the unique probability function on this
σ-algebra such that for any cylinder set Y = { f | f (i) ∈ g(i) for all i ∈ X}, π∗(Y) =

∏
i∈X π(g(i)).

23Dorr and Hawthorne (2022) discuss several empirical reasons for being interested in
the extra strength that comes from allowing r , ⊤.

24The move to transfinite sequences may however introduce new possibilities if we move
to a theory of primitive conditional probability like Popper’s, or allow for infinitesimal
probabilities.

25Note that in any model with a probability function satisfying Fact 13.2 (or even the
weakening below that requires r and p to be Boolean), the two sides of any instance of
Flattening where p and q are Boolean and pq has positive probability will have to have the
same probability. For π∗(p > (pq > r)) = π∗(pq > r) | p = π∗(r | pq) = π∗(pq > r). One might
see this securing a limited kind of “probabilistic validity” for the two one-premise inference
rules corresponding to the two directions of Flattening. However, there is no obvious route
from 13.2 to the claim that the instances of Flattening have probability one, even for Boolean
p and q; and the tree models introduced below show that if we weaken 13.2 to require p
and r to be Boolean, we can have models where instances of Flattening have probability
less than one.
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The only way in which we weaken Fact 13.2 is that the antecedent p and
the background condition r now both have to be Boolean: we no longer
allow zero-degree conditionals or conjunctions thereof. The idea of the vari-
ant result is to build an order-model whose worlds are not sequences of
protoworlds, but infinitely-branching trees of protoworlds—structures that
consist of a root protoworld together with a countable infinity of branches
each of which is itself a tree. Formally, we can construct these as functions
from lists of natural numbers to protoworlds:

Definition 13.3. – For any set X, X∗ is the set of lists over X.

– For a set P, the set of trees over P is PN∗ : i.e., the set of functions from
lists of naturals to members of P.

– When τ is a tree over P, the root of τ is τ(⟨⟩), and the nth branch of τ (for
any n ∈N) is the tree τ′ such that τ′(α) = τ(⟨n⟩ + α) for any α ∈N∗.

– We can introduce the following order function on any PN∗ : When
ρ, σ, τ ∈ PN∗ , ρ <τ σ iff either ρ = τ and σ is the nth branch of τ
for some n, or for some n and m, ρ is the nth branch of τ, and σ is the
mth branch of τ, and there is no k ≤ n such that σ is the kth branch of τ.

– When P is any nonempty set, the tree frame over P is the order model
with domain PN∗ , with< as above. A tree model is an order model based
on a tree frame.

Theorem 13.4. The logic of tree models is C2.

Proof. Given a finite order model ⟨W, <,V⟩, we can associate each world w
with a tree τw over W by setting τw(⟨⟩) = w and τw(⟨n⟩+α) = τv(α), where v is
the world n+1 steps out from w in<w if there is one, otherwise the last world
in <w. If we assign each atom the same truth value at τw that V assigns it at
w, the same sentences will be true at τw as at w. The completeness of C2 for
finite order frames then yields the completeness of C2 for tree frames. □

We can now prove our tree-frame analogue of Fact 13.2:

Fact 13.5. Where π is a probability measure on P, π† is the probability
measure on PN∗ derived from π by the product measure construction, and
V is a valuation on the tree frame PN∗ in which denotations of atoms never
distinguish between trees with the same root, thenπ†(Jp > qK | JrK) = π†(JqK |
JpK) whenever π∗(JrK | JpK) = 1 and both p and r are Boolean.

Proof. First some definitions which apply to any function space PI (including
PN∗). When X ⊆ I and Y ⊆ PI, say that Y supervenes on X iff for any f , g ∈ PI,
if f (i) = g(i) for all i ∈ X, then f ∈ Y iff g ∈ Y. When Y,Z ⊆ PI, say that Y is
orthogonal to Z iff for some X ⊆ I, Y supervenes on X and Z supervenes on
I \X. When f is a f : I→ I and Y ⊆ PI, f −1(Y) is {g | g ◦ f ∈ Y}; f is measurable
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iff f −1(Y) is in the domain of π∗ whenever Y is. We rely on two standard facts
about the product measure π∗ on PI derived from some probability measure
π on P:

(i) If Y and Z are orthogonal and in the domain of π∗, π∗(Y ∩ Z) =
π∗(Y)π∗(Z).

(ii) If f : I → I is injective and measurable and Y is in the domain of π,
π†( f −1(Y)) = π†(Y) .

Fix P, π,V, p, q, r such that p and r are Boolean and π†(JrK | JpK) = 1. If π†(JpK |
JrK) = 1, we are done, since π†(Jp > qK | JrK) = π†(Jp ∧ qK | JrK) = π†(JqK | JpK);
so we may assume π†(JpK | JrK) is positive.

Let Y be the set of all trees such that either they have no branch in JpK, or
their first branch in JpK is in JqK. Define two injective functions f , g :N∗ →N∗

by f (⟨⟩) = ⟨0⟩, f (⟨n⟩ + α) = ⟨n + 1⟩ + α; g(α) = ⟨0⟩ + α. Set:

Z B f −1(Y)

U B g−1(Jp ∧ qK)

W B g−1(JpK)

That is, Z is the set of all trees such that either none of their branches except
perhaps for their zeroth branch is in JpK, or their first positive-indexed branch
in JpK is in JqK; U is the set of all trees such that p ∧ q is true at their zeroth
branch, and W is the set of all trees such that p is false at their zeroth branch.
Then Y = U ∪ (Z ∩W). Z is orthogonal to W, since Z supervenes on the set
of lists beginning with a positive integer, while W supervenes on the set of
lists beginning with 0. So

π†(Y) = π†(U) + π†(Z)π†(W) = π†(Jp ∧ qK) + π†(Y)π†(JpK)

Hence (1 − π†(JpK)π†(Y) = π†(Jp ∧ qK), i.e. π†(Y) = π†(Jp ∧ qK)/π†(JpK) =
π†(JqK | JpK).

This gives us something close to what we need. Looking at the definition
of Y, we see that p > q is true at a tree τ iff either p∧ q is true at τ, or p is false
at τ and τ ∈ Y. That is, Jp > qK = Jp ∧ qK ∪ (Y ∩ JpK). So,

π†(Jp > qK | JrK) = π†(Jp ∧ qK | JrK) + π†(Y ∩ JpK | JrK)

= π†(JqK | Jp ∧ rK)π†(JpK | JrK) + π†(Y | Jp ∧ rK)π†(JpK | JrK)

Butπ†(JqK | Jp ∧ rK) = π†(JqK | JpK) sinceπ†(JrK | JpK) = 1. And Y is orthogonal
to Jp ∧ rK (since the latter supervenes on {⟨⟩} while Y supervenes on the set
of nonempty lists), and hence π†(Y | Jp ∧ rK) = π†(Y) = π†(JqK | JpK). So we
have:

π†(Jp > qK | JrK) = π†(JqK | JpK)π†(JpK | JrK) + π†(JqK | JpK)(1 − π†(JpK | JrK))

= π†(JqK | JpK) □
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By contrast, tree models do not sustain a version of Stalnaker’s Thesis that
allows zero-degree conditionals in the antecedent. For example, suppose we
build a tree model over P = {0, 1, 2, 3}, with π as the indifferent prior over
these four protoworlds. Let V(p) = {τ | τ(⟨⟩) ∈ {0, 1}} and V(q) = {τ | τ(⟨⟩) =
0}. Then π†(p | p > q) = π†(pq)/π†(p > q) = π(pq)/π(p | q) = π†(p) = 1/2. But
with some tedious algebraic calculations we will spare the reader, we have
shown that π†((p > q) > p) = 7/12 in this tree model.

So, the part of the proof of Fact 13.2 that involves antecedents that are
zero-degree conditionals (or conjunctions thereof) turns essentially on the
extra strength of sequence models as opposed to tree models, which is inti-
mately connected to the validity of Flattening in the former. If one thought
there were good reasons to want some version of Stalnaker’s thesis that
applies to conditionals whose antecedents are zero-degree conditionals (or
conjunctions thereof), that might potentially yield an interesting argument
for the validity of Flattening, or at least for the truth of Flattening-instances
where pq has positive probability. But it is not clear that there are such rea-
sons available to those who accept C2. For as Stalnaker showed in his 1974
letter to van Fraassen, proponents of C2 must reject Stalnaker’s Thesis for
certain conditionals whose antecedent is a disjunction one of whose disjuncts
is a zero-degree conditional: in C2, (p ∨ (p > q)) > pq is equivalent to pq, so
π((p ∨ (p > q)) > pq) = π(pq); but whenever 0 < π(pq) < π(p) < 1, given that
π(p > q) = π(q | p), it follows that π(pq) , π(pq | p ∨ (p > q)). Given this,
those of us who (unlike Bacon 2015) are not willing to give up on C2 will
need to have some strategy for explaining away the prima facie appeal of
strong versions of Stalnaker’s Thesis that apply even to antecedents with the
forbidden disjunctive form. Perhaps, for example, they will appeal to some
special factors that influence the resolution of context-sensitivity in such a
way that conditionals embedded in the antecedents of other conditionals
tend to be interpreted in some special way, maybe differently from the con-
ditional in which they are embedded (cf. Kaufmann 2023). Whatever we end
up saying in response to this challenge, it seems likely that it will generalize
in such a way that it can also explain away the appeal of Stalnaker’s Thesis
for conditionals whose antecedent is a single zero-degree conditional on
its own, or a conjunction of such conditionals. Conversely, if such a story
is unconvincing, then we will presumably want to follow Bacon 2015 in
rejecting C2, in particular Reciprocity, so that we can vindicate a version
of Stalnaker’s Thesis for the full language. It seems unlikely that the extra
strength of Fact 13.2 over Fact 13.5, lying as it does in an awkward terrain
strictly between a natural limitation of Stalnaker’s Thesis to Boolean an-
tecedents and a vindication of Stalnaker’s Thesis for all antecedents, could
form the basis for a compelling argument for Flattening.
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14 Conclusion

Setting aside the logics of material and strict conditionals, the study of
classical conditional logic has focused almost exclusively on logics of which
C2 is an extension. But we have seen in this paper that van Fraassen’s models
point the way to a rich array of conditional logics which properly extend
C2 (while still not collapsing into the material conditional). While some of
these logics seem too complex and arbitrary to be plausible candidates for
the logic of natural-language conditionals, at least one of them, namely C2.F,
enjoys considerable prima facie plausibility.

There are several further questions about this space of logics which one
could explore.

– Exploration of the logics of classes of ordinal sequence models with
given upper bound on the length of the sequences, either finite or
strictly between ω and ωω.

– We characterized Sequentiality relative to the flat order frames. It is
also possible to characterize Sequentiality directly, relative to all order
frames, yielding a characterization result for the logic C2.S obtained
by adding every instance of Sequentiality to C2. Given an order frame
⟨<,W⟩, and P ⊆W, write Pw for P ∩ R(w).

Theorem 14.1. ⟨<,W⟩ validates Sequentiality iff

∀P ⊆W,w ∈ P, x ∈ Pw : ∃y <w x : (∀z ∈ Py : x ≤y z) ∨ (∀z ∈ Py : x <y z)

The proof is in a footnote.26 An interesting question is whether this
condition is essentially second-order or can be restated in a first-order
way.

26
⇒: Suppose the RHS fails and let P,w, x witness the failure, and pick a valuation V with

V(p) = P and V(q) = {x}. Then ∀y <w x : (∃z ∈ Py : x ≰y z) ∧ (∃z ∈ Py : x ≮y z). This ensures
that the premise of Sequentiality is true and the conclusion false.
⇐: Suppose the RHS holds and consider any valuation V. Let us use P for V(p) and Q for

V(q). Consider any w ∈W:

◦ If R(w) ∩ P ∩Q = ∅ then w ⊩ (p > q) > ¬p.

◦ If R(w) ∩ P ∩Q , ∅ and w ∈ P then w ⊩ p ∨ ((p > q) > ¬p).

◦ If R(w)∩P∩Q , ∅ and w < P, let x be the first PQ-world in <w. Then by the condition,
for some y <w x, either:

· the left disjunct holds, so y ⊩ ¬p ∧ (p > q); and if p > q is true at any world
preceding y in <w it is true at a ¬p-world (since all the p-worlds before y in <w
are ¬q-worlds), so w ⊩ (p > q) > ¬p; or
· the right disjunct holds, so y ⊩ ((¬p∨ q) > p)∧¬q; again, if (¬p∨ q) > p is true at

any world prior to y in <w it is a ¬q-world, since all p-worlds preceding y in <w
are ¬q-worlds; so w ⊮ ((¬p ∨ q) > p) > q.

41



– From the other direction, we have given the logic of order frames that
are ancestral and flat, namely, C2.FS. An interesting question is what
logic ancestrality on its own corresponds to, that is: what is the logic of
ancestral order frames? One coud ask similar questions about several
other conditions that are equivalent to being ancestral in the presence
of flatness, but not in general.

– We can explore the results of adding Sequentiality and/or Flatness to
conditional logics weaker than C2.

– We can explore alternate axiomatizations of Sequentiality that may be
easier to assess, including statements of Sequentiality as a rule rather
than axiom.

– Fine (1971) establishes the striking fact that every modal logic that
includes the modal logic S4.3 is decidable. Given the association be-
tween C2.F and S4.3, it is natural to conjecture that C2.F has the
same property. However, Fine’s proof is quite complex and does not
immediately suggest a strategy for proving this.
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A Preliminaries

We start with some definitions that we will use throughout this appendix.
We continue to use sequence for any function to an underlying non-empty

set whose domain is an ordinal at least as great as ω, and list for any such
from a finite ordinal.

– σα is the value of σ on α, where defined; so e.g. σ0, σ1, σ2 are the first,
second, and third element of σ.

– σ−1, σ−2, σ−3 are the last, second last, and third last elements of σ, and
so on, when they exist. (They may not exist, e.g. if it’s an ordinal like
ω that doesn’t have a last element).

– σ[α:] is the α-tail of σ, that is, ⟨σα, σα+1. . . ⟩.

– σ[α:β] is the result of deleting σ[β:] from the end of σ[α:]. We write σ[:β] for
σ[0:β], that is, the result of deleting σ[β:] from σ.

– (σ + σ′) is the result of concatenating σ with σ′: that is, where l(σ) and
l(σ′) are the respective domains of σ and σ′:

(σ + σ′)(α) =


σ(α) α ≤ l(σ)
σ′(α − l(σ)) l(σ) < α ≤ l(σ) + l(σ′)
undefined otherwise

Recall some abbreviations for our conditional language:

– p≫ q := ¬(p > ¬q), or, equivalently in C2, ♢p ∧ p > q;

– □p := ¬p > p;

– ♢p := ¬□¬p, or equivalently, ¬(p > ¬p).

Fix a logic L containing C2; talk of consistency, entailment, equivalence,
and so on throughout the appendix are relative to L (we will make succes-
sively stronger assumptions about L as we go).

For a list of sentences τ, set
∧
τ = τ0

∧ · · · ∧ τ−1 and
∨
τ = τ0

∨ · · · ∨ τ−1,
with

∧
⟨⟩ = ⊤ and

∨
⟨⟩ = ⊥. Fix a standard ordering on the sentences, so we

can extend the use of
∧

and
∨

from lists to finite sets.
Our key tool in this appendix will be a function that takes a list of

sentences τ and makes a single sentence τ. We define this recursively:

Definition A.1. The function · is the unique function from lists of sentences
to sentences such that:

⟨⟩ B ⊤

τ + ⟨p⟩ B

τ ∧ ((¬
∨
τ)≫ p) if p , ⊥

τ ∧ ((¬
∨
τ) > p) if p = ⊥
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Example A.2. If p, q , ⊥, then
1. ⟨p⟩ is ⊤ ∧ (¬⊥ ≫ p), which is C2-equivalent to p.
2. ⟨p, q⟩ is ⟨p⟩ ∧ (¬

∨
⟨p⟩ ≫ q), equivalent to p ∧ (p > q) ∧ ^p.

3. ⟨p, q,⊥⟩ is ⟨p, q⟩∧(¬
∨
⟨p, q⟩ > ⊥), equivalent to p∧(p > q)∧^p∧□(p∨q).

We call a list τ “consistent” iff τ is consistent (in L). Note that for τ to be
consistent, no later element other than ⊥ can entail any earlier element,
since if τ j entailed τk for j < k, (¬

∨
τ[:k]) > τk would be inconsistent with^τk.

Also, if ⊥ occurs anywhere in a consistent list, every subsequent element
of the list must also be ⊥: if p ⊬ ⊥, τ + ⟨⊥, p⟩ is equivalent to τ ∧ ((¬

∨
τ) >

⊥) ∧ ((¬(
∨
τ ∨ ⊥) ≫ p), which is inconsistent since the second conjunct

entails ((¬
∨
τ) > ¬p) while the last conjunct is equivalent to ¬(

∨
τ > ¬p).

The consistent lists we will be concerned with all contain an inconsistency,
if at all, only as the last element.

The interest of this list-to-sentence operation turns on the following basic
results.

Lemma A.3. If τk entails p ∧ q and every element of τ[:k] entails p, then τ
entails p > q.

Proof. We use the following facts about any logic including C2:

(p > qr)→ (pq > r)CMon
If ⊢ p↔ q then ⊢ (p > r)↔ (q > r)Antecedent Substitution

τ entails ¬
∨
τ[:k] > τk and hence both ¬

∨
τ[:k] > p and ¬

∨
τ[:k] > q. So by

CMon, it entails ((¬
∨
τ[:k]) ∧ p) > q. But since every member of τ[:k] entails

p, (¬
∨
τ[:k]) ∧ p is equivalent to p. So by antecedent substitution, τ entails

p > q. □

Lemma A.4. If p is consistent with τ, τ does not end with⊥, and ⊢
∨
τ∨ q1∨

· · · ∨ qn, then either p is consistent with τ + ⟨qi⟩ for some qi, or p is consistent
with τ + ⟨⊥⟩.

Proof. By induction on the length of τ. The claim holds trivially when τ is ⟨⟩,
given that ⟨qi⟩ is equivalent to qi. For the induction step, we use the following
theorem of C2:

∨-Distribution (p > (q1 ∨ · · · ∨ qn))→ ((p > q1) ∨ · · · ∨ (p > qn))

If ⊢
∨
τ ∨ q1 ∨ · · · ∨ qn, then (¬

∨
τ) > (q1 ∨ · · · ∨ qn) is a theorem, so by

Distribution, p ∧ τ must be consistent with (¬
∨
τ) > qi for some qi. If it is

moreover consistent with (¬
∨
τ) ≫ qi, that means that p is consistent with

τ + ⟨qi⟩; otherwise, p is consistent with τ + ⟨⊥⟩. □

Lemma A.5. If q , ⊥ and p is consistent with (¬
∨

X ≫ q), or q = ⊥ and p is
consistent with (¬

∨
X > q), there is a consistent list τ of elements of X such

that p is consistent with τ + ⟨q⟩.
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Proof. We cover the case where q , ⊥; the other case is similar. We first
show that for any sequence θ consisting of members of X other than ⊥, if
p ∧ (¬

∨
X ≫ q) ∧ θ is consistent, then there is some p in X ∪ {⊥} but not

in θ such that p ∧ (¬
∨
τX ≫ q) ∧ θ + ⟨p⟩ is consistent. This follows from

the previous lemma, since the disjunction of all elements of X with ¬
∨

X is
a theorem, and θ + ⟨¬

∨
X⟩ is inconsistent with ^¬

∨
X which follows from

(¬
∨

X ≫ q), while θ + ⟨p⟩ is inconsistent when p is in θ. But if p was not
consistent with τ + ⟨q⟩ for any τ consisting entirely members of X, then the
relevant p can never be q, so we have that every θ can be extended with
some further element of X, which is impossible since X is finite. □

Thanks to these nice properties, we can use the list-to-sentence operation
to define a hierarchy of ‘state descriptions’ over a given set of atoms, where
the state descriptions of a given depth n consistently settle the truth value of
all sentences of modal depth no greater than n that can be built out of those
atoms.

Definition A.6. For a given finite set of atoms A, the sets Yn(A) (the “depth-n
state descriptions over A”) are defined as follows.

– Y0(A) is the set of all consistent conjunctions that include exactly one
of p and p for each p ∈ A.

– Yn+1(A) is the set of all consistent sentences of the form τ + ⟨⊥⟩, where
τ is any list of elements of Yn(A).

Example A.7. Suppose our logic L is C2 and A is {p, q}. Then Y0(A) is the
4-member set {pq, pq, pq, pq}.

Y1(A) contains τ + ⟨⊥⟩ for each nonempty, nonrepeating sequence τ of
elements of Y0(A). There are 64 such sequences (24 of length 4, 24 of length
3, 12 of length 2, and 4 of length 1). τ + ⟨⊥⟩ is consistent in C2 for each such
sequence, although this is not true for all extensions of C2: for example, if we
added the axiom p→ □p to C2, Y1(A) would just contain the four sentences
⟨pq,⊥⟩, ⟨pq,⊥⟩, ⟨pq,⊥⟩, and ⟨pq,⊥⟩.

Y2(A) is much bigger. However, it does not contain ⟨τ,⊥⟩ for every non-
repeating, nonempty list τ of elements of Y1(A). For example, it does not
contain

⟨⟨pq, pq,⊥⟩, ⟨pq,⊥⟩,⊥⟩

since this is inconsistent in C2: ⟨pq, pq,⊥⟩ entails ¬(pq) > pq, and hence also
¬⟨pq, pq,⊥⟩ > pq by CMon; this is inconsistent with ¬⟨pq, pq,⊥⟩ ≫ ⟨pq,⊥⟩.

For ⟨τ1, . . . , τn,⊥⟩ to be consistent (where each τi is in Yn), the list derived
from this by first replacing each τi with the first element of τi, and then
deleting all but the first occurrence of every element in the result, must be
τ1. (In C2, this is in fact the only constraint.)

45



Lemma A.8. If s ∈ Yn(A) and p is a sentence of modal depth ≤ n with atoms
from A, then either s entails p or s entails p.

Proof. By induction on n. The base case is true since the elements of Y0(A)
settle the truth value of every atom in A, hence every Boolean combination of
atoms in A. For the induction step, it suffices to show that when s ∈ Yn+1(A)
and p and q have modal depth ≤ n, s entails one of p > q and ¬(p > q). Any
such s will be of the form τ + ⟨⊥⟩where each element of τ is in Yn+1. Suppose
that the first element of τ + ⟨⊥⟩ that entails p also entails q. Then since no
previous element entails p, all of them entail p by the induction hypothesis;
so by Lemma A.3, τ + ⟨⊥⟩ entails p > q. Otherwise, the first element of
τ + ⟨⊥⟩ that entails p does not entail q. Call this element t. By the induction
hypothesis, t entails q and all of its predecessors entail p, so τ + ⟨⊥⟩ entails
p > q by Lemma A.3. Moreover, t is not⊥ since it does not entail q, so τ + ⟨⊥⟩
entails ^t and hence ^p, which together with p > q entails ¬(p > q). □

Lemma A.9. If p is consistent, it is consistent with some element of Yn(A) for
every n ≥ 0.

Proof. By induction on n. The base case holds since
∨

Y0(A) is a tautology. For
the induction step, we note that since the disjunction of Yn(A) is a theorem
by the induction hypothesis, p∧ (¬

∨
Yn(A) > ⊥) is consistent whenever p is,

so by Lemma A.5, there is a sequence τ of elements of Yn(A) such that p is
consistent with τ + ⟨⊥⟩. τ + ⟨⊥⟩ is our desired element of Yn+1(A). □

The upshot of this is that if we want to show that every L-consistent sentence
has a model of a certain sort, it suffices to show that every member of every
Yn(A) has a model of that sort.

A.1 C2 is weakly complete for finite order-models

We now turn to our first result: C2 is weakly complete for finite order-
models. While this result is not new (or at least is part of the conditionals
folklore), proving it now will provide an introduction to the proof techniques
that we will wheel out for proving the completeness of the successively
stronger logics C2.F and C2.FS.

Definition A.10. For a given finite set of atoms A and natural number n, we
define an order-model MA,n.

– The worlds of MA,n are all of the depth m state descriptions over A for
m ≤ n.

– The order relation of MA,n is defined as follows: where s = τ + ⟨⊥⟩,
t <s u iff for some i, u = τi, and either t = s or t = τ j for some j < i.

– The valuation of MA,n is the obvious one: pi is true at s iff s entails pi.
(Atoms not in A are thus false everywhere.)
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Lemma A.11. Each world in MA,n is true at itself.

Proof. We prove, by induction on n, that every sentence of (modal) depth
≤ m with atoms in A is true in MA,n at a state description s of depth ≥ m iff s
entails p. The lemma follows immediately from this.

– Atoms: immediate from the definition of MA,n.

– Conjunction: obvious.

– Negation: by Lemma A.8, s entails ¬p when p is a depth ≤ m sentence
that s doesn’t entail p.

– Conditional: Suppose s = τ + ⟨⊥⟩ is a state-description of depth ≥ m+ 1
and p > q is a conditional of depth ≤ m+ 1, meaning that p and q must
have depth ≤ m.

(i) First suppose p > q is false at s. Then there is some u ∈ R(s) such
that p and ¬q are true at u, while ¬p is true at t whenever t <s u.
Since every member of R(s) is a depth ≥ m state description, we
have that u entails p ∧ ¬q while every t such that t <s u entails
¬p. If u = s, s does not entail p > q (since if it did it would be
inconsistent, by Modus Ponens). Otherwise, u = τi for some i ≥ 1,
and we have that τ j entails ¬p for all j < i—including j = 0, since
τ0 entails all the depth ≤ m sentences s entails. So by Lemma A.3,
s entails p≫ ¬q, hence does not entail p > q.

(ii) Next, suppose p > q is true at s. Then there are two cases: either
p > ¬q is false at s, or □¬p is true at s. In the former case, by
part (i), s does not entail p > ¬q and thus does entail p > q by
Lemma A.8. In the latter case, ¬p is true at every world in R(s), so
by the induction hypothesis, all of these worlds entail ¬p. Hence
every member of τ entails ¬p: τ0 does too because it agrees with s
on depth ≤ m sentences. But s entails □(τ0

∨ · · · ∨ τ−1), so s entails
□¬p, and hence also p > q. □

The completeness of C2 for finite order models is immediate from Lemma A.11.
Suppose p is a depth n sentence that is consistent in C2. Then p is equiv-
alent to a normalized depth n term over the set of atoms appearing in p.
Hence there is at least one depth n state description that entails p in C2
(for instance, the first disjunct of the normalized depth n term); each such
state-description is true at itself in MA,n, and hence p is true at all of them in
MA,n.
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B Completeness of C2.F

Now we turn towards our completeness result for C2.F. We will prove that
C2.F is complete for finite ordinal sequence frames, and hence for finite flat
order frames. We build on our earlier definitions, now assuming that our
underlying logic L includes C2.F.

The key new results we get by adding Flattening are as follows.

Lemma B.1. If τ is consistent, τ−1 entails q > r, and every element of τ[:−1]

entails q, then every consistent element of τ[:−1] is consistent with q > r.

Proof. Suppose for contradiction that τ is consistent, τ−1 entails q > r, every
member of τ[:−1] entails q, and τk is consistent, but not consistent with q > r. τ
entails τ[:−1]

∧((¬
∨
τ[:−1]) > τ−1), and hence τ[:k+1]

∧((¬
∨
τ[:−1]) > (q > r)). Since

q entails ¬
∨
τ[:−1] and ¬

∨
τ[:k], (¬

∨
τ[:−1]) > (q > r) and (¬

∨
τ[:k]) > (q > r) are

both equivalent to q > r by the Flattening Rule, hence equivalent to each
other. Hence, τ[:k+1]

∧(¬
∨
τ[:k] > (q > r) is consistent. τ[:k+1] is τ[:k]

∧((¬
∨
τ[:k])≫

τk), so we can conclude that (¬
∨
τ[:k]) ≫ (τk

∧ (q > r)) is consistent. But this
is ruled out by the hypothesis that τk is inconsistent with (q > r). □

Lemma B.2. If τ is consistent, then for each element τk other than τ−1, there
is a consistent list θ of elements of τ such that θ0 = τk, θ−1 = τ−1, and the
elements of τ[k+1:] all occur, in the same order, in θ.

Proof. We may suppose without loss of generality that the elements of τ
are pairwise inconsistent, since if not we can just replace each one with its
conjunction with the negations of all its predecessors. If τ is consistent and
of length j + 1 and τ−1 , ⊥, then for each k < j,

τ0
∧ (¬
∨
τ[:k]
≫ τk) ∧ · · · ∧ (¬

∨
τ[:−1]

≫ τ−1)

is consistent. Since ¬
∨
τ[:−1]

⊢ ¬
∨
τ[:k], the ≫-Flattening Rule says that this

formula entails

¬
∨
τ[:k]
≫ (τk

∧ (¬
∨
τ[:k+1]

≫ τk+1) ∧ · · · ∧ (¬
∨
τ[:−1]

≫ τ−1))

which is thus also consistent. Since p ≫ q is consistent only when q is, we
can conclude that

τk
∧ (¬
∨
τ[:k+1]

≫ τk+1) ∧ · · · ∧ (¬
∨
τ[:−1]

≫ τ−1)

is consistent too. But then, by Lemma A.5, there must be a listθ of elements of
τ, ending with τ−1, such the conjunction of this sentence with θ is consistent.
And clearly, for this to be consistent, π0 must be τk and all of τ[k+1:−1] must
occur in π in the same order. □

The previous lemma suggests what will turn out to be a key contrast,
between two kinds of consistent lists:
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Definition B.3.

– τ is direct iff there is a consistent list of elements of τ that has the same
last element as τ and includes at least two elements of τ, but does not
include every element of τ.

– τ is circuitous iff τ is consistent and not direct.

Note that given Lemma B.2, when τ is circuitous, we can associate each
element t of τ other than the last with a permutation πt of τ that begins with
t and has the same last element as τ.

Example B.4. Recall the depth-1 state descriptions from ??:

A B ⟨pq, pq, pq,⊥⟩

B B ⟨pq, pq,⊥⟩

C B ⟨pq,⊥⟩

D B ⟨pq, pq, pq,⊥⟩

⟨A,B,C⟩ is direct, since ⟨B,C⟩ is also consistent, has the same last element,
but does not include A. By contrast, ⟨A,D,C⟩ is circuitous, since ⟨D,C⟩ and
⟨A,C⟩ are both inconsistent.

We will describe a function that takes any consistent list τ of elements of
any Y+n , and returns a (possibly-repeating, possibly-transfinite) sequence ↑τ,
such that the elements of ↑τ are exactly the elements of τ[:−1], and the order
of their first occurrences in ↑τ is the same as the order of their occurrence in
τ.

Definition B.5. We define ↑τ recursively, based on the length of τ. For the
base cases, when the length of τ is 0 or 1, ↑τ B ⟨⟩. When the length of τ is 2,
↑τ B τ[:1] (i.e. ⟨τ0

⟩).
For the recursion step, when τ is of length k > 2, there are two cases,

depending on whether τ is direct or circuitous.

– Case 1: τ is direct, so there is a consistent sequence of elements of τ
with the same last element as τ and length strictly between 1 and k. Let
j the greatest number < k − 1 such that τ j is the first element of such
a sequence, and let π be such a sequence beginning with τ j. (If there
are multiple such sequences beginning with τ j, choose π to be the first
one according to some fixed order on sequences).

If j = k− 2, let θ = ⟨τ j
⟩. If j < k− 2, then we know from Lemma B.2 that

there is a consistent sequence that contains every element of τ, begins
with τ−2 and ends with τ−1. Let θ+ be the first such sequence, and let
θ be its initial segment up to and including the occurrence of τ j; note
that this is also consistent and has length < k.

Then define
↑τ B ↑τ[:−1] + ↑θ + ↑π
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– Case 2: τ is circuitous. Then by Lemma B.2, for each element t of τ
other than the last, there is a consistent list that begins with t, ends
with τ[:−1], and contains every element of τ. Define a function π such
that for each t in τ other than its last element, π(t) is such a list: τ if t
is the first element of τ; otherwise, the alphabetically earliest such list.
Let π−(t) B π(t)[:−1], g(t) B π(t)−1. Then define:

↑τ B ↑π−(τ0) + ↑π−(g(τ0)) + ↑π−(g(g(τ0))) + ↑π−(g(g(g(τ0)))) + · · ·

We also define ↑+τ to be ↑τ + ⟨τ−1
⟩.

Lemma B.6. Whenever τ is consistent and of length at least 1, the elements
of ↑τ are exactly those of τ[:−1], and their first occurrences in ↑τ are in the
same order as in τ[:−1]. (And hence the elements of ↑+τ are exactly those of
τ, and their first occurences are in the same order as in τ.)

Proof. By induction on the length of τ.
Base cases (1, 2): obvious.
Induction step: Suppose τ is consistent and of length k. If it isdirect, ↑τ is

↑τ[:−1] + ↑θ+ ↑π, where θ and π are sequences of elements of τ of length < k.
By the induction hypothesis, all elements of τ except the last two already
occur in ↑τ[:−1], in the same order in which they occur in τ (i.e. in τ[:−1]).
Moreover, the penultimate element of τ occurs later in ↑τ,either as the first
element of ↑θ (if θ has length at least 2) or else as the first element of ↑π (if
θ has length 1). And furthermore, neither ↑θ nor ↑π has any elements not in
θ[:−1] or π[:−1] respectively, hence neither has any elements not in τ[:−1]. So all
the elements of τ[:−1] occur in ↑τ, in the right order.

Meanwhile, if τ approaches p circuitously, ↑τ is

↑π−(τ0) + ↑π−(g(τ0)) + ↑π−(g(g(τ0))) + ↑π−(g(g(g(τ0)))) + · · ·

where π− and g are as defined above. By the induction hypothesis, ↑π−(τ0),
i.e. ↑τ[:−1], comprises exactly the elements of τ[:−2], with the same order of first
occurrence. Meanwhile, τ−2 is g(τ0), which is the first element of π−(g(τ0))
and hence of ↑π−(g(τ0)), and thus also occurs in ↑τ after all elements of τ[:−2].
And since each subsequent term in the infinite sum is derived by applying
↑ to a sequence of elements of τ[:−1], nothing not in τ[:−1] occurs in any of
them. □

Lemma B.7 (Backtracking). Suppose τ is a consistent sequence of Yn state
descriptions, σ + ⟨s⟩ is a subsequence of ↑+τ, and q, r are sentences of modal
depth < n such that s entails q > r and every element of σ entails ¬q. Then
every element of σ entails q > r.

Proof. By induction on j. Base cases for 0 and 1 are are trivial. Base case for 2:
↑
+τ = τ, so the only nontrivial case is where s = τ1 and σ = ⟨τ0

⟩. Suppose τ1

entails q > r and τ0 entails ¬q. Then q > r is equivalent to (¬τ0
∧q) > r, which
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is equivalent by Flattening to ¬τ0 > ((¬τ0
∧ q) > r), which is equivalent to

¬τ0 > (q > r), which is entailed by ¬τ0 > τ1. Since τ0 is consistent with
¬τ0 > τ1, it is thus consistent with q > r. Since it’s a depth n state description
and q and r are depth < n, we can conclude that it entails q > r, i.e. that every
element of σ entails q > r.

For the induction step, suppose the claim holds for sequences of length
≤ k, and suppose τ is consistent and of length k + 1.

Case 1: τ is direct, so ↑+τ has the form

↑τ[:−1] + ↑θ + ↑+π

with θ, t, and π sequences of length ≤ k as in Definition B.5. If σ is a
subsequence of ↑τ[:−1] or ↑θ or ↑π, σ+ ⟨s⟩ is a subsequence of ↑+τ[:−1], ↑+θ, or
↑
+π, so the claim follows from the induction hypothesis. If σ is of the form
σ1 +σ2 where σ1 is a final subsequence of ↑θ and σ2 is an initial subsequence
of ↑π, then we first appeal to the induction hypothesis for π to show that
every element of σ2 entails q > r. In particular, σ0

2 entails q > r, and σ1 + ⟨σ0
2⟩

is a subsequence of ↑+θ, so by the induction hypothesis for θ every element
of σ1 also entails q > r. Finally, if σ is of the form σ1 + σ2 where σ1 is a final
subsequence of ↑τ[:−1] and σ2 is an initial subsequence of ↑θ + ↑+π, then
every element of σ2 entails q > r by what we just showed. But σ1 + ⟨σ0

2⟩ is
a subsequence of ↑+τ[:−1], so by the induction hypothesis applied to τ[:−1],
every element of σ1 also entails q > r.

Case 2: τ is circuitous. Let π− and g be as in the definition of ↑. Then
either (i) σ is a subsequence of ↑π−(t) for some element t of τ[:−1], or (ii) σ is
of the form σ1 + σ2, where for some t, σ1 is a tail of ↑π−(t) and σ2 is an initial
subsequence of ↑π−(g(t)), or (iii) σ is of the form

σ1 + ↑π
−(g(t)) + · · · + ↑π−(gn(t)) + σ2

for some t, σ1 which is a tail of ↑π−(t) and σ2 which is an initial subsequence
of ↑π−(gn+1(t)), or (iv) s is the last element of τ and σ is of the form

σ1 + ↑π
−(g(t)) + ↑π−(g(g(t))) + · · ·

where for some t, σ1 is a tail ofπ−(t). In situation (i), we can appeal directly to
the induction hypothesis for π−(t). In situation (ii), we first use the induction
hypothesis for π−(g(t)) to show that every element of σ2 entails q > r, and
then use the induction hypothesis for π−(t) and the fact that σ1 + ⟨σ0

2⟩ is a
subsequence of ↑+π(t) to show that every element of σ1 also entails q > r. In
situation (iii), we first use the same method to show that every element of
↑π−(gn(t))+σ2 entails q > r. Since every element of τ[:−1] except gn+1(t) occurs
in π−(gn(t)), and gn+1(t) is the first element of σ2, and every element of σ is
in τ[:−1], this is already enough to show that every element of σ entails q > r.
Finally, in situation (iv), we first that since every element of τ[:−1] other than
g(g(t)) occurs in ↑π−(g(t)), and g(g(t)) is the first element of ↑π−(g(g(t))), the
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elements of σ are exactly the elements of τ[:−1]. Thus every element of τ[:−1]

entails ¬q, while τ−1 entails q > r, and so by Lemma B.1, every element of
τ[:−1], and hence every element of σ, entails q > r. □

Definition B.8. Given a sequence τ of depth-n state-descriptions such that
sτ + ⟨⊥⟩ is consistent, Mτ is the ordinal sequence-model whose set of pro-
toworlds is the set of depth n state descriptions over the atoms of s, and its
sequences are the tails of ↑τ+ ⟨⊥⟩. The valuation is the obvious one: atom pi

is true at tail σ iff the first element of σ entails pi (or equivalently, has it as a
conjunct).

Lemma B.9. InMτ, every sentence p of depth ≤ n is true at a sequence σ iff
it is entailed by σ0.

Proof. By induction on complexity.
Atoms: given by the valuation.
Boolean operations: obvious.
Conditional. Suppose q and r are of depth ≤ k. Suppose q > r is not true

at σ. Then for some β, q ∧ ¬r is true at σ[β:] and q is not true at σ[α:] for any
α < β. By the induction hypothesis, σβ entails q∧¬r, and σα entails ¬q for all
α < β. By And-to-if, σβ entails q > ¬r. So by Lemma B.7, σα entails q > ¬r for
all α < β, and in particular σ0 entails q > ¬r. Since it is consistent, it does not
also entail q > r.

Meanwhile, if q > r is true at σ, there are two cases. In the first case,
q > ¬r is not true at σ, in which case σ0 does not entail q > ¬r by what we just
proved ,and hence σ0 entails q > r (because it’s a depth n state-description).
In the second case, q > ⊥ is true at σ, meaning that q is false at every tail of
σ. By the induction hypothesis, every element of σ entails ¬q. Since σ + ⟨⊥⟩
is a subsequence of ↑+τ + ⟨⊥⟩ and ⊥ entails q > r, we can apply Lemma B.7
again to conclude that every element of σ, and thus in particular σ0, entails
q > r. □

Lemma B.10. If τ + ⟨⊥⟩ is a depth-n + 1 state description, it is true inMτ.

Proof. Given the definition of (τ + ⟨⊥⟩), it is easy to see that it is true at a
sequence in an ordinal sequence model iff the state-descriptions true at tails
of that sequence are exactly those that occur in τ, and the order of their first
occurrences is given by τ. Given the previous lemma, this means it is true in
Mτ so long as the elements of ↑(τ + ⟨⊥⟩) are exactly those of τ and their first
occurrences are in the same order as in τ. But we already proved that this is
the case as Lemma B.6. □

This establishes our first result:

Theorem B.11. If L extends C2.F, each consistent sentence of L is true in
some ordinal sequence model.
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Proof. Given a consistent sentence p of modal depth n, there must be a depth-
n state description τ + ⟨⊥⟩ over the atoms used in p that entails p; then by
the previous lemma, p will be true inMτ. □

As a bonus, our proof also yields a second completeness result:

Theorem B.12. If L extends C2.F, each consistent sentence of L is true in
some finite flat order-model.

Proof. Ordinal sequence models are flat order-models, so it suffices to check
thatMτ is always finite. (Finite in the sense that the domain contains finitely
many worlds = sequences; the sequences themselves may be infinite se-
quences in the sense of having an infinite ordinal as their domain). We
prove this by proving by induction on the length of τ that whenever τ is
consistent, ↑τ has only finitely many tails.

Base cases (0, 1, 2): trivial.
Induction step: Suppose τ is of length k + 1. If it is directly, then ↑τp is of

the form ↑τ[:−1] + ↑θ + ↑π, where τ[:−1], θ, and π are all of length ≤ k. By the
induction hypothesis, each of ↑τ[:−1], ↑θ, and ↑π has only finitely many tails.
But every tail of ↑τ is either (i) a tail of ↑π, or (ii) of the form σ + ↑π, where
σ is a tail of ↑θ, or (iii) of the form σ + ↑θ + ↑π, where σ is a tail of ↑τ[:−1]. So
there are only finitely many such tails.

Meanwhile, if τ is circuitous, ↑τ is of the form

↑π−(τ0) + ↑π−(g(τ0)) + ↑π−(g(g(τ0))) + · · ·

where g is a function that maps elements of τ[:−1] to other elements of τ[:−1],
and π− is a function that maps each element s of τ[:−1] to a consistent list of
length k. By the induction hypothesis, each of these has only finitely many
tails. And there are only finitely many of them, so there are only finitely
many ways of picking a tail of ↑τ. □

C Completeness for C2.FS

Suppose now that our logic L includes C2.FS, i.e. the result of adding Se-
quentiality to C2.F:

((¬p ∨ q) > q)) > q→ p ∨ ((p > q) > ¬p)Sequentiality

Or, equivalently in C2, in contraposed form:

¬p ∧ ((p > q)≫ p)→ (¬p ∨ q > q)≫ ¬q

With this extra assumption, we can now show the following:

Lemma C.1. If τ is circuitous, τ−1 is ⊥.
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Proof. Suppose for contradiction that τ is circuitous and its last element is
some q , ⊥. Define:

s := τ0

d :=
∨
τ[1:−2]

s+ := s ∧ (¬(s ∨ d)≫ q)
d+ := d ∧ (¬(s ∨ d)≫ q)
p := d+ ∨ q

Note that s and d are both inconsistent with q. Further, d+ is obviously
inconsistent with p > q, since it entails p ∧ ¬q. We can also show that s+ is
inconsistent with p > q. Since τ is circuitous, ⟨s, q⟩ is inconsistent, meaning
that s ∧ (¬s≫ q) is inconsistent. If so,

(I) s+ ∧ ((d ∨ q)≫ q)

must also be inconsistent: since¬s is equivalent to¬(s∨d)∨d∨q,¬(s∨d)≫ q
and (d ∨ q) ≫ q jointly entail ¬s ≫ q by OR. By Flattening, s+ entails ¬s >
(¬(s ∨ d) ≫ q). It also entails ¬s > (d ∨ q) (by OR, since ¬s is equivalent to
d ∨ ¬(s ∨ d)); so by CMon, we have (¬s ∧ (d ∨ q)) > (¬(s ∨ d) ≫ q), or more
simply, (d ∨ q) > (¬(s ∨ d) ≫ q). Looking at the definitions of s+ and d+, we
see that this is equivalent to (d ∨ q) > (d+ ∨ q). So by CTrans,

(II) s+ ∧ ((d+ ∨ q)≫ q)

entails I and is thus also inconsistent. So s+ ∨ d+ is inconsistent with p > q.
Since¬(s+∨d+) is weaker than¬(s∨d), by Flattening s+ entails¬(s+∨d+) >

(¬(s∨ d)≫ q), and hence ¬(s+ ∨ d+)≫ ¬(s∨ d). So by CTrans, s+ also entails
¬(s+ ∨ d+)≫ q, and hence (p > q)≫ q. and hence (p > q)≫ p.

Now finally we can appeal to the contraposed form of Sequentiality, to
get that s+ also entails (p∧ (¬pq > q))≫ ¬q, or equivalently, (q∨ (d+∧ (¬d+ >
q))) ≫ ¬q. Since d+ entails ¬d+ > ¬d by Flattening, by the same reasoning
as above, this is also equivalent to (q ∨ (d+ ∧ (¬d > q))) ≫ ¬q. But the
stipulation that τ is circuitous means that d+ ∧ (¬d ≫ q) is not consistent: if
this were consistent, there would have to be some consistent subsequence
of τ ending in q and excluding s. Thus, d+∧ (¬d > q) is equivalent to d+∧□d,
meaning that s+ entails (q ∨ (d+ ∧ □d)) ≫ ¬q, and hence (q ∨ ¬♢q) ≫ ¬q,
i.e. ¬((q ∨ ¬♢q) > q). But by Flattening, ♢q entails (q ∨ x > ♢q) for all x, and
in particular (q ∨ ¬♢q) > q. We can conclude that s+ entails ¬♢q. But this
contradicts the stipulation that τ is consistent. □

Using this, we can show

Lemma C.2. Whenever τ is consistent and does not end with ⊥, ↑τ is finite.

Proof. A trivial induction on the length of τ. □
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Lemma C.3. Whenever τ is consistent, ↑τ is at most of length ω.

Proof. Given the previous lemma, it suffices to prove the result in the last
element of τ is ⊥. We do so by induction on the length of τ. The base cases
(0,1,2) are trivial. For the first part of the induction step, suppose τ is direct,
so that ↑τ is of the form ↑τ[:−1] + ↑θ + ↑π. Since neither τ[:−1] nor θ ends with
⊥, the first two summands are finite by the previous lemma, and the third
summand is at most of length ω by the induction hypothesis, so the ↑τ is
at most of length ω. For the second part of the induction step, suppose τ is
circuitous. Then ↑τ is

↑[π−(τ0),+]↑π−(g(τ0)) + ↑π−(g(g(τ0))) + · · ·

where each π−(t) is a sequence not ending in ⊥. By the previous lemma, all
these sequences are finite; so the sum of all of them has order type ω. □

Hence:

Theorem C.4. C2.2 is complete for finite ordinal sequence models in which
all sequences have order-type at most ω.

In fact we can slightly strengthen this result:

Theorem C.5. C2.2 is complete for finite ordinal sequence models of order-
type exactly ω.

Proof. For any list σ, let the ω-padding of σ be the ω-sequence that results
from repeating the last element of σ ω times. Note that τ is a (nonempty) tail
of σ iff the ω-padding of τ is a tail of the ω-padding of σ, and the omega-
padding of any list has the same first element of that list. So in any ordinal
sequence model that contains some finite sequences, we can replace every
such sequence with its omega-padding without disrupting the order relation
or the valuation. □

Note too that every ordinal sequence model whose sequences have length
at most ω is ancestral: every tail of every sequence can be reached by suc-
cessively deleting the initial element. So we can also draw the following
corollary:

Theorem C.6. C2.FS is complete for finite flat ancestral order models.

D The McKinsey axiom

In this section we consider logics L that include, along with C2.F, the McK-
insey axiom

M ♢□p ∨ ♢□¬p

We’ll use the following consequence of the axiom in the context of S4:

M’ □(p1 ∨ · · · ∨ pn)→ (♢□p1 ∨ · · · ∨ ♢□pn)
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Proof. By induction on n. Base case trivial. Induction step: suppose □(p1 ∨

· · ·∨pn). By M we have ♢□(p1∨· · ·∨pn−1)∨♢□pn. By the induction hypothesis,
♢♢□p1 ∨ · · · ∨ ♢♢□pn−1 ∨ ♢□pn. So by 4, ♢□p1 ∨ · · · ∨ ♢□pn−1 ∨ ♢□pn. □

M gives us the following opposite number for the main lemma with
Sequentiality:

Lemma D.1. If τ is circuitous, it does not end with ⊥.

Proof. Suppose that τ is consistent and ends with ⊥; then in particular
¬(
∨
τ[0:−1]) > ⊥, i.e. □(τ0

∨ · · · ∨ τ−2), is consistent. So by the previous lemma,
♢□τ0

∨ · · · ∨ ♢□τ−2 is consistent, so there must be some p in τ[:−1] such that
♢□p and hence also □p is consistent. In that case ⟨p,⊥⟩ is consistent, so τ is
not circuitous. □

Using this, we can show

Lemma D.2. Whenever τ is consistent and ends with ⊥, the domain of ↑τ is
a successor ordinal.

Proof. An obvious induction on the length of τ. □

Hence

Theorem D.3. C2.FM is complete for finite ordinal sequence models in
which the domains of all sequences are successor ordinals.

And putting together this lemma with the one from the previous section,
we have

Theorem D.4. C2.FSM is complete for finite list-models, i.e. models whose
domain consists of finitely many ordinal-sequences, each of which has a
finite ordinal as its domain.

E Languages without left-nesting

In this section we show that all theorems of C2.FSM in the language LBA

in which conditionals are required to have Boolean antecedents are already
theorems of C2.F.

Suppose we start with a valuation V on the set of protoworlds P, and
the ordinal-sequence model MV,α whose domain is the set of all ordinal-
sequences over P whose domain is less than α (for some given ordinal α).
We define a function h that takes a sequence σ in this model’s domain and a
LBA-sentence p to a set h(σ, p) of ordinals in the domain of σ—intuitively, the
ones that are “relevant” to the truth value of p at σ. Here is the definition:

h(σ, pi) := {0} for pi an atom
h(σ,¬p) := h(σ, p)

h(σ, p ∧ q) := h(σ, p) ∪ h(σ, q)

h(σ, p > q) :=

{0} ∪ {α + β | β ∈ h(σ[α:], q)} if σ has a first p-tail, σ[α:]

{0} otherwise
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Obviously h(σ, p) is always a finite set of ordinals.
Any set X of ordinals is well-ordered by ≤, and hence there is an order-

preserving mapping fX between X and some ordinal. Thus, for any ordinal
sequence σ and a set X of ordinals, we can construct a new ordinal sequence
σ↾X, defined by (σ↾X)(α)= σ( f −1

X (α)) (if α is in the range of f , else undefined).
Note that when α ∈ X, we have σ[α:]

{β : α + β ∈ X}↾ = σ↾X[ fX(α) :]. Since σ↾X
cannot be longer than σ, it is guaranteed to be in the domain ofMV,α if σ is.

Lemma E.1. Suppose X includes every member of h(σ, p). Then inMV,α, the
truth value of p at σ is the same as the truth value of p at σ↾X.

Proof. By induction on the complexity of p. For atoms, this follows from the
fact that restricting any sequence by a set of ordinals that includes 0 yields
a sequence with the same first element. For negation and conjunction it is
obvious.

For a conditional p > q (where p is Boolean), note first that if no pro-
toworld where p is true occurs in σ, this will also be true of σ↾X. So
suppose that a p-protoworld occurs for the first time at position α in σ.
Then α ∈ h(σ, p > q) ⊆ X. Then h(σ, p > q) = {0} ∪ {α + β : β ∈ h(σ[α:], q)}, so
h(σ[α:], q) ⊆ {β : α + β ∈ X}. So we can see that the truth value of p > q at σ is
the same as the truth value of q at σ[α:], which (by the induction hypothesis)
is the same as its truth value at σ[α:]↾{β : α + β ∈ X}, i.e. σ↾X[ f −1

X (α) :]. Since
no p-protoworlds occur in σ before position α, none occur in σ↾X before
position f −1

X (α), and so this is the same as the truth value of p > q at σ↾X. □

Taking X = h(σ, p), we have:

Corollary E.2. For each p, the truth value of p at σ inMV,α is its truth value
at the finite sequence σh(σ, p)↾.

Finally, since throwing all sequences other than σh(σ, p)↾ and its (finitely
many) tails out of the domain will not affect the truth value of any sentence,
we can conclude that:

Theorem E.3. EveryLBA sentence p that is consistent in C2.F is true in some
list-model, and hence also consistent in C2.FSM.

References

Bacon, Andrew (2015). “Stalnaker’s Thesis in Context”. In: Review of Symbolic
Logic 8.1, pp. 131–163.

— (2020). “Logical Combinatorialism”. In: The Philosophical Review 129.4,
pp. 537–589.

Bacon, Andrew and Cian Dorr (2024). “Classicism”. In: Higher-Order Meta-
physics. Ed. by Peter Fritz and Nicholas K. Jones. Oxford: Oxford Univer-
sity Press, pp. 109–190.

57



Bull, R. A. (1966). “That all Normal Extensions of S4.3 have the Finite Model
Property”. In: Zeitschrift für mathematische Logik und Grundlagen der Math-
ematik 12, pp. 341–344.

Dale, A. J. (1974). “A Defence of Material Implication”. In: Analysis 34.3,
pp. 91–95.

Dale, Tony (1979). “A natural deduction system for ‘If Then’”. In: Logique &
Analyse 22.87, pp. 339–345.

Dorr, Cian, Jeremy Goodman, and John Hawthorne (2014). “Knowing Against
the Odds”. In: Philosophical Studies 170.2, pp. 277–287.

Dorr, Cian and John Hawthorne (2022). “If...: A theory of conditionals”.
Manuscript, NYU and USC.

Dorr, Cian, John Hawthorne, and Juhani Yli-Vakkuri (2021). The Bounds of
Possibility. Puzzles of Modal Variation.

Douven, Igor and Sara Verbrugge (2013). “The Probabilities of Conditionals
Revisited”. In: Cognitive Science 37.4, pp. 711–730.

Edgington, Dorothy (1995). “On Conditionals”. In: Mind 104.414, pp. 235–
329.

Etlin, David (2008). “Modus Ponens Revisited”. Manuscript, MIT. Feb. 2008.
Fine, Kit (1971). “The Logics Containing S4.3”. In: Zeitschrift für mathematische

Logik und Grundlagen der Mathematik 17, pp. 371–376.
— (1974). “An incomplete logic containing S4”. In: Theoria 40.1, pp. 23–29.
van Fraassen, Bas (1976). “Probabilities of Conditionals”. In: Foundations of

Probability Theory, Statistical Inference, and Statistical Theories of Science. Ed.
by Harper and Hooker. Vol. I. Dordrecht-Holland: D. Reidel Publishing
Company, pp. 261–308.

Gibbard, Allan (1981). “Two Recent Theories of Conditionals”. In: Ifs: Condi-
tionals, Belief, Decision, Chance, and Time. Ed. by William L. Harper, Robert
Stalnaker, and Glenn Pearce. Dordrecht: Reidel, pp. 211–247.

Goldstein, Simon and Paolo Santorio (2021). “Probability for Epistemic
Modalities”. In: Philosophers’ Imprint 33.

Holliday, Wesley H. and Thomas F. Icard (2018). “Axiomatization in the
Meaning Sciences”. In: The Science of Meaning: Essays on the Metatheory of
Natural Language Semantics. Ed. by Derek Ball and Brian Rabern. Oxford:
Oxford University Press, pp. 73–97.

Holliday, Wesley H. and Tadeusz Litak (2019). “Complete Additivity and
Modal Incompleteness”. In: The Review of Symbolic Logic 12.3, pp. 487–
535.

Kaufmann, Stefan (2009). “Conditionals Right and Left: Probabilities for the
Whole Family”. In: Journal of Philosophical Logic 38, pp. 1–53.

— (2015). “Conditionals, conditional probabilities, and conditionalization”.
In: Bayesian Natural Language Semantics and Pragmatics. Ed. by H. Zee-
vat and H.-C. Schmitz. Springer International Publishing Switzerland,
pp. 71–94.

— (2017). “The Limit Assumption”. In: Semantics & Pragmatics 10.

58



Kaufmann, Stefan (2023). “Bernoulli semantics and ordinal semantics for
conditionals”. In: Journal of Philosophical Logic 52.1, pp. 199–220.

Khoo, Justin (2022). The Meaning of If. Oxford University Press.
Khoo, Justin and Paolo Santorio (2018). “Lecture Notes: Probability of Con-

ditionals in Modal Semantics”. Unpublished manuscript. July 2018.
Kratzer, Angelika (1981). “The Notional Category of Modality”. In: Words,

Worlds, and Contexts: New Approaches in Word Semantics. Ed. by H. Eik-
meyer and H. Rieser. de Gruyter, pp. 38–74.

— (1986). “Conditionals”. In: Chicago Linguistics Society 22.2, pp. 1–15.
Lewis, David (1973). Counterfactuals. Oxford: Blackwell.
— (1976). “Probabilities of Conditionals and Conditional Probabilities”. In:

The Philosophical Review 85.3, pp. 297–315. issn: 00318108.
— (1994). “Humean Supervenience Debugged”. In: Mind 103, pp. 473–90.
Mandelkern, Matthew (2024). Bounded meaning: The dynamics of interpretation.

In press. Oxford University Press.
McGee, Vann (1985). “A Counterexample to Modus Ponens”. In: The Journal

of Philosophy 82.9, pp. 462–471.
Popper, Karl (1959). The Logic of Scientific Discovery. Hutchinson.
Salmon, Nathan U. (2005). Reference and Essence. 2nd ed. Amherst, NY:

Prometheus Books. Repr. of Reference and Essence. 2nd ed. Amherst, New
York: Prometheus Books, 2006.

Santorio, Paolo (2021). “Path Semantics for Indicative Conditionals”. In:
Mind.

Schultheis, Ginger (2022). “Counterfactual Probability”. In: Journal of Philos-
ophy.

Segerberg, Krister (1970). “Modal logics with linear alternative relations”.
In: Theoria 36.3, pp. 301–322.

— (1989). “Notes on Conditional Logic”. In: Studia Logica: An International
Journal for Symbolic Logic 48.2, pp. 157–168.

Stalnaker, Robert (1968). “A Theory of Conditionals”. In: Studies in Logical
Theory. Ed. by Nicholas Rescher. Oxford: Blackwell, pp. 98–112. url:
https://philpapers.org/rec/STAATO-5.

— (1974). Letter to Bas Van Fraassen. Jan. 1974.
— (1975). “Indicative Conditionals”. In: Philosophia 5.3, pp. 269–86. url:
https://philpapers.org/rec/STAIC.

Stalnaker, Robert C. (1970). “Probability and Conditionals”. In: Philosophy of
Science 37.1, pp. 64–80.

Stalnaker, Robert C. and Richmond H. Thomason (1970). “A semantic anal-
ysis of conditional logic”. In: Theoria 36.1, pp. 23–42.

Thomason, S. K. (1974). “An incompleteness theorem in modal logic”. In:
Theoria 40.1, pp. 30–34.

Van Benthem, J. F. A. K. (1978). “Two Simple Incomplete Modal Logics”. In:
Theoria 44.1, pp. 25–37.

Williamson, Timothy (2000). Knowledge and its Limits. Oxford University
Press.

59

https://philpapers.org/rec/STAATO-5
https://philpapers.org/rec/STAIC


Yalcin, Seth (2007). “Epistemic Modals”. In: Mind 116.464, pp. 983–1026.

60


	Introduction
	The conditional logic C2
	Order models for C2
	A note on strong completeness
	-sequence semantics
	Some variations on -sequence models
	Flattening
	Evaluating Flattening
	The logic C2.F
	Sequentiality
	The completeness of C2.FS
	The modal logic of C2.FS
	Sequentiality in natural language
	A simpler axiomatization?

	Ordinal sequence frames
	List frames and successor-ordinal frames
	Is there a probability-theoretic argument for C2.FS?
	Conclusion
	Preliminaries
	C2 is weakly complete for finite order-models

	Completeness of C2.F
	Completeness for C2.FS
	The McKinsey axiom
	Languages without left-nesting

